Skip to main content Skip to navigation

Latest Publications

Select tags to filter on

Genetic manipulation of Indian mustard genotypes with WRR-gene(s) confers resistance against Albugo candida

Nirwan, Shradha, Chatterjee, Anupriya, Cevik, Volkan, Holub, Eric B., Jones, Jonathan D. G., Tewari, Anand Kumar, Shrivastava, Neeraj, Agnihotri, Abha and Sharma, Pankaj

In an effort to develop resistant plants, Agrobacterium mediated genetic transformation of three B. juncea genotypes viz., susceptible host var. Varuna, along with its doubled haploid mutant lines C66 and C69 (showing moderate tolerance to field isolates of A. candida) was initiated to transfer resistance genes (WRR8Sf-2 and WRR9Hi-0) identified in Arabidopsis thaliana against race Ac2V, that encode for Toll-like/interleukin-1 receptor-nucleotide binding-leucine-rich repeat proteins that recognize effectors of the pathogen races. Our results demonstrate that introduction of resistance genes from a tertiary gene pool by genetic transformation enhances disease resistance in B. juncea genotypes to a highly virulent Ac2V isolate.

Molecular Biology Reports. January 2024

Mon 26 Feb 2024, 08:11 | Tags: Plant & Agricultural Bioscience

Slow release of a synthetic auxin induces formation of adventitious roots in recalcitrant woody plants

O Roth, S Yechezkel, O Serero, A Eliyahu, I Vints, P Tzeela, A Carignano, DP Janacek, V Peters, A Kessel, V Dwivedi, M Carmeli-Weissberg, F Shaya, i Faigenboim-Doron, KL Ung, B Panyella Pedersen, J Riov, E Klavins, C Dawid, Z Hammes, N Ben-Tal, R Napier, E Sadot, R Weinstain

Clonal propagation of plants by induction of adventitious roots (ARs) from stem cuttings is a requisite step in breeding programs. Due to the central role of auxin in organogenesis, indole-3-butyric acid is often used as part of commercial rooting mixtures, yet many recalcitrant plants do not form ARs in response to this treatment. Here we describe the synthesis and screening of a focused library of synthetic auxin conjugates in Eucalyptus grandis cuttings and identify 4-chlorophenoxyacetic acid-L-tryptophan-OMe as a competent enhancer of adventitious rooting in a number of recalcitrant woody plants, including apple and argan. Comprehensive metabolic and functional analyses reveal that this activity is engendered by prolonged auxin signaling due to initial fast uptake and slow release and clearance of the free auxin 4-chlorophenoxyacetic acid. This work highlights the utility of a slow-release strategy for bioactive compounds for more effective plant growth regulation.

Nature Biotechnology. January 2024

Thu 15 Feb 2024, 08:18 | Tags: Plant & Agricultural Bioscience

Interactions of long-term grazing and woody encroachment can shift soil biogeochemistry and microbiomes in savanna ecosystems

Ryan M. Mushinski, Yong Zhou, Ayumi Hyodo, Claudio Casola, Thomas W. Boutton

We investigated the interactions between livestock grazing history (none, moderate, heavy) and vegetation cover (grassland, juniper, oak) using a ∼ 70-year grazing experiment in west-central Texas. We explored effects on soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), microbial community composition, and function. The findings highlight how long-term livestock grazing and woody plant encroachment influence soil C, N, P cycles, altering soil microbial community structure and function. This study provides insights for savanna ecosystem management and integrating land cover effects into biogeochemical models for global change scenarios.

Geoderma.  January 2024


Gary Bending publications

Quantifying microplastic dispersion due to density effects

Stride, Ben, Abolfathi, Soroush, Bending, Gary D. and Pearson, Jonathan M

An experimental study was conducted on how polymer density affects the transport and fate of microplastics in aquatic flows. For the first time, polypropylene (PP), polyethylene (PE), polymethyl methacrylate (PMMA), polyetheretherketone (PEEK), and polyvinyl chloride (PVC) were chemically stained and tested using solute transport techniques and velocities found among rivers in the natural environment (0.016 – 0.361 m/s). Except for PP, in most conditions microplastics exhibited similar transport characteristics to solutes regardless of density and established solute transport models were successfully implemented to predict their transport and fate.. This data is the first to provide microplastic suspension and deposition thresholds based on river velocity and polymer density, making a key contribution to research predicting microplastic fate and organismal exposure.

Journal of Hazardous Materials. January 2024

Distinct biogeographic patterns in Glomeromycotinian and Mucoromycotinian arbuscular mycorrhizal fungi across China: A meta-analysis

Zihao Liu, Jie Fang, Yucheng He, Gary D Bending, Bin Song, Yaping Guo, Xiaojie Wang, Zemin Fang, Jonathan M Adams

Fine root endophytes, recently reclassified as Mucoromycotinian arbuscular mycorrhizal fungi (M-AMF), are now recognized as functionally important as Glomeromycotinian AMF (G-AMF). Here, we investigated the biogeographic assemblies and ecological diversity patterns of both G-AMF and M-AMF, using published 18S rDNA amplicon datasets and associated metadata from 575 soil samples in six ecosystems across China. This study provides solid evidence that the two AMF groups have distinct ecological preferences at the continental scale in China, and also highlights the potential impacts of anthropogenic activities on distributions of AMF. These results advance our knowledge of the ecological differences between the two fungal groups in terrestrial ecosystems, suggesting the need for further field-based investigation that may lead to a more sophisticated understanding of ecosystem function and sustainable management.

Science of the Total Environment. December 2023


Long noncoding RNA-mediated epigenetic regulation of auxin-related genes controls shade avoidance syndrome in Arabidopsis

María Florencia Mammarella, Leandro Lucero, Nosheen Hussain, Aitor Muñoz-Lopez, Ying Huang, Lucia Ferrero, Guadalupe L Fernandez-Milmanda, Pablo Manavella, Moussa Benhamed, Martin Crespi, Carlos L Ballare, Jose Gutierrez-Marcos, Pilar Cubas, Federico Ariel

The long noncoding RNA (lncRNA) AUXIN-REGULATED PROMOTER LOOP (APOLO) recognizes a subset of target loci across the Arabidopsis thaliana genome by forming RNA–DNA hybrids (R-loops) and modulating local three-dimensional chromatin conformation. Here, we show that APOLO regulates shade avoidance syndrome by dynamically modulating expression of key factors. We show that direct application of APOLO RNA to leaves results in a rapid increase in auxin signaling that is associated with changes in the plant response to far-red light. Collectively, our data support the view that lncRNAs coordinate shade avoidance syndrome in A. thaliana, and reveal their potential as exogenous bioactive molecules. Deploying exogenous RNAs that modulate plant–environment interactions may therefore become a new tool for sustainable agriculture.

EMBO Journal. December 2023


George Bassel publications

A quantitative morphospace of multicellular organ design in the plant Arabidopsis

Salva Duran-Nebreda, Matthew D.B. Jackson, George W. Bassel

The investigation of cellular organization can provide insight into organ function following structure-function relationships. Here, we investigate the extent to which properties in cellular organization can arise ‘‘for free’’ as an emergent property of embedding cells in space versus those that are actively generated by patterning processes. A 3D cellular-resolution digital tissue atlas for the model plant species Arabidopsis was generated, and the extent to which the organs in this organism conform to the default configurations was established through statistical comparisons with digital tissue models. This work establishes a quantitative morphospace to understand the principles of organ construction and its diversity within a single organism.

Current Biology. November 2023

Toward uncovering an operating system in plant organs

Gwendolyn V Davis, Tatiana de Souza Moraes, Swanand Khanapurkar, Hannah Dromiack, Zaki Ahmad, Emmanuelle M Bayer, Rishikesh P Bhalerao, Sara I Walker, George W Bassel

Molecular motifs can explain information processing within single cells, while how assemblies of cells collectively achieve this remains less well understood. Plant fitness and survival depend upon robust and accurate decision-making in their decentralised multicellular organ systems. Mobile agents, including hormones, metabolites, and RNAs, have a central role in coordinating multicellular collective decision-making, yet mechanisms describing how cell-cell communication scales to organ-level transitions is poorly understood. Here, we explore how unified outputs may emerge in plant organs by distributed information processing across different scales and using different modalities. Mathematical and computational representations of these events are also explored toward understanding how these events take place and are leveraged to manipulate plant development in response to the environment.

Trends in Plant Science. November 2023

Mon 11 Dec 2023, 08:26 | Tags: Plant & Agricultural Bioscience

Latest news Newer news Older news