Skip to main content Skip to navigation

WMG News

Select tags to filter on

Coventry schools to build future cities from recycled household items

Children at Courthouse Green primary school listening to the online workshop

· TeenTech is a national charity working with school children to help them consider a future in digital, science technology and engineering.

· Their TeenTech City of Tomorrow initiative is working with nine Coventry schools with the help of WMG, University of Warwick

· Experts from WMG will deliver advice to children on sustainable materials, and inspire them as they design and build their city of the future out of recyclable household items

· A few Cities will then be exhibited at The Coventry Transport Museum

TeenTech City of Tomorrow will see Coventry school children make a city of recyclable household items, with help from researchers at WMG, University of Warwick who will teach them all about sustainability. A select few ideas – buildings and technology- will then be exhibited at the Coventry Transport Museum.

TeenTech is a national charity engaging children and teenagers in Digital, Science, Engineering and Technology and their latest initiative has launched today, the 11th November, in Coventry, which will see nine schools in Coventry build a futuristic sustainable city out of recyclable household items.

As it’s ‘Cities, Regions and Built Environment’ day at the COP26 summit in Glasgow, researchers from WMG at the University of Warwick are helping children understand sustainability and its importance, by delivering an online session about sustainable materials and why it’s important we use them more for a greener future, thanks to funding from the University’s Innovative Manufacturing and Future Materials GRP.

The children will then have two weeks to build their cities from recyclable household items. Three researchers from WMG, University of Warwick will run workshops, educating the children in using natural products for sustainable solutions and how to dispose of products.

On the 25th November the researchers from will then provide feedback, before selecting a few of the buildings and ideas to be exhibited at the Coventry Transport Museum from the end of the month.

Dr Stuart Coles from WMG, University of Warwick comments:

Malik, Jody and Christian from Mrs Barretts class.

“Having spent my career researching how to reduce, reuse and recycle materials I am honoured to be a part of the TeenTech City of Tomorrow initiative, and look forward to seeing how creative the children can be in making a futuristic and environmentally friendly city.

“It is our children that will suffer from the damage we have caused and are causing to the planet, therefore it is imperative that we educate them from young age about sustainability and how they can create a cleaner and greener future for themselves and future generations, whilst we work out how we can change our ways to further prevent the climate crisis.”

Maggie Philbin, CEO of TeenTech comments:

“We want young people in Coventry to understand they can shape the future with their ideas. Young people think boldly, differently and inclusively and this is the thinking we need for a sustainable future. Tomorrow is very much a two-way event – experts will be sharing their knowledge, but we know that it will be the children who surprise everyone with their creativity, honesty and who will be the ones to challenge outdated thinking.

“Their buildings may be constructed from cardboard boxes but their ideas will be sophisticated and ones which should be seriously considered. They really are the architects, the engineers and the designers of the future. Let’s listen to them.”

Mrs Kaur, Class Teacher at Courthouse Green primary school comments:

"TeenTech is a great project to engage and enthuse the children and encourages them to consider how to be responsible about improving their environment. It has given the children the opportunity to think big about their world. their future and their role within it.

"The children are learning life skills, teamwork and are thinking outside the box to design and create cities that could effect change. The project is amazing! If I could give up a whole week to work on this, I would...it's real-life skills in the classroom."

Two children from year 5 at Courthouse Green Primary school have said:

"I love the project because it will help the future. It has made me think about climate change and how it is affecting our cities. In Coventry I see lots of litter and it gives our city a bad reputation. My team, Team Queen Tech are designing a treehouse from recycled materials that filters wastewater to use again." - Bhavika age 9

"We have designed a hotel for homeless people which is made from sustainable materials like bamboo." Sanjot Age 9


CO2 consuming concrete technology showcased at COP26 to be tested at University of Warwick

  • Concrete contributes to 8% of global CO2e emissions, however Concrete4Change are on a mission to make concrete CO2 sinks rather than producers
  • The CO2 sequestrating technology is being developed with the help of the School of Engineering and WMG SME group at the University of Warwick
  • Researchers will help by testing the concrete which could revolutionise the concrete industry
  • Concrete4Change won the award for Achieving Net Zero category at the UN Climate Change Cup last night at COP26

Image showing from left to right, CTO Dr Michael Wise and Dr Sid Pourfalah, Founder and CEO of Concrete4Change at COP26Technology developed by Concrete4Change that can make concrete a carbon sink rather than carbon producer will be trialled and tested by researchers from the University of Warwick. The technology which could revolutionise the concrete industry on a global scale, has been showcased and won an award at COP26.

After water concrete is the most consumed material in the world, and accounts for 8% of global CO2e emissions. However, Concrete4Change Ltd. (C4C) are on a mission is to enable the concrete industry to transition from CO2 emitters to CO2 sinks, by developing a technology capable of removing significant amounts of CO2 from the atmosphere and absorbing it into concrete.

In fact, it was announced last night at COP26 that Concrete4Change have been announced as the winner of the Achieving Net Zero category of the 2021 UN Climate Change Challenge Awards.

The sequestration of CO2 results in the strength enhancement of concrete; therefore, reducing the amount of cement required to produce equivalent-strength concrete. Both CO2 sequestration and cement reduction can contribute to the reduction of concrete’s CO2 footprint. This technology has the potential to mitigate 2 billion tonnes of CO2e emissions, the equivalent of 4% of global CO2e emissions.

The School of Engineering and WMG centre High Value Manufacturing Catapult at the University of Warwick are proud to be supporting Concrete4Change, by undertaking essential testing for the company with the help of funding through Innovate UK and the DI4M programme.

Dr Reyes Garcia from the School of Engineering comments:

“As the world strives to reach zero-carbon goals, the construction industry and we civil engineers have a huge role to play to make concrete more sustainable. The cement we use to produce concrete contributes massively to CO2 emissions, and therefore we need to take drastic action now if the construction sector is to achieve its CO2 reduction goals. Here, at the School of Engineering, we are incredibly excited to support Concrete4Change by performing concrete technology and durability tests, which are critical to prove that the technology can be safely adopted by designers, contractors and concrete producers”.

Dave Myers from the WMG SME group at the University of Warwick comments:

“In order to make sure the concrete made by this innovative technology is as good, as if not better than previous standards we will be assisting Concrete4Change by completing testing and microscopical examination.

“Once testing has been completed the partnerships that C4C have made can help bring this technology to market and reinvent the concrete industry into a more sustainable and eco-friendlier one.”

Concrete4Change has built partnerships with other leading academic institutions as well as with some of the largest concrete producers in the world including Hanson Heidelberg, Kier, SIG, Morgan Sindall and Skanska.

Dr Sid Pourfalah, Founder and CEO of Concrete4Change comments:

“We are delighted to have the help to bring our unique technology to the market with help with the University of Warwick, not only are we showcasing our technology at COP26, but we have also been selected by Brazilian Ideiagov as one of the top 10 companies to tackle Latin America’s Net-Zero Challenge, bringing us hope that our technology is transferrable worldwide, and can help us shape tomorrow for future generations.”

C4C has also been selected by British Precast Federation as one of the top 3 most innovative companies and as one of the top 5 companies for Knowledge Transfer Network (KTN) Transforming Foundation Industries (TFI).

ENDS

11 NOVEMBER 2021

NOTES TO EDITORS

High-res images available at:

https://warwick.ac.uk/services/communications/medialibrary/images/november_2021/img_20211109_132635.jpg
Caption: From left to right, CTO Dr Michael Wise and Dr Sid Pourfalah, Founder and CEO of Concrete4Change at COP26
Credit: Conrete4Change

https://warwick.ac.uk/services/communications/medialibrary/images/november_2021/img_20211109_125514_003.jpg
Caption: COP26 flowers
Credit: Concrete4Change

Find out more about Concrete4Change here: https://www.concrete4change.com/

C4C selected for the prestigious Climate Challenge Cup (10th of November): https://lnkd.in/gfdmtWzZ

For further information please contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk

 

Thu 11 Nov 2021, 11:07 | Tags: SME HVM Catapult Research Sustainability

Electric vehicles could be powered by Hydrogen harvested from sewage

  • Image of Dr Stuart Coles Hydrogen is valuable as it is a renewable source, and could be sold to the chemicals and plastics industry or used in hydrogen fuel cells for energy storage or electric vehicles
  • The ability to take hydrogen from waste water provides a new economic and environmental opportunity, however until now it has been incredibly expensive to suffice
  • Using a recycled carbon fibre mat, researchers from WMG, University of Warwick, have been able to produce Hydrogen from wastewater for Severn Trent

Wastewater treatment is vital to remove pathogens, but is incredibly energy intensive. The ability to treat it more sustainably is a challenge researchers from WMG, University of Warwick have been able to achieve, using recycled carbon fibre mats to produce hydrogen from waste water.

Treating wastewater is a vital process, as it removes pathogens and protects the environment, however this comes at its own environmental cost, as it is highly energy intensive, using around 3% of energy use in the UK – the equivalent to 13 billion kilowatt hours.

The water and waste company Severn Trent set researchers from WMG, University of Warwick, the challenge of finding a more energy efficient way to treat wastewater, with the team successfully building on research into Microbial Electrolysis Cells.

Microbial Electrolysis Cells involves using electromagnetic microorganisms to break down organic pollutants in waste water, producing clean water and hydrogen gas. The ability to produce Hydrogen gas is valuable in itself as it can be sold to chemical and plastics industry, or for use in hydrogen fuel cells for energy storage or electric vehicles.

Although this all sounds promising it hasn’t been developed on an industrial scale, as the anode materials - which are used in the reaction to breakdown the organic pollutants – are made of graphite or carbon, and cost several hundred pounds per square metre, and produce low rates for Hydrogen.

Dr Stuart Coles and his team therefore took on the challenge of refining the technique by looking at alternative anode materials and processing methods, and successfully identified recycled carbon fibre mats as an alternative anode, which costs only £2 per square metre, making it significantly cheaper than existing anode materials.

After testing the carbon fibre mats on synthetic wastewater and real wastewater, researchers found the bacteria developed on the recycled carbon fibre anode, which had better temperature tolerance and produced more hydrogen than previously used materials.

They then decided to pilot their techniques at Severn Trent’s Minworth waste treatment site, where they successfully processed up to 100 litres of wastewater per day and managed to remove 51% of organic pollutants and up to 100% of suspended solids from the water while producing 18 times more hydrogen (at 100% purity) than the graphite material.

Image of Dr Stuart ColesDr Stuart Coles, from WMG, University of Warwick comments:
“We are really excited about this technology. By taking waste from the automotive and aerospace sectors, we have developed a circular solution to a longstanding problem. Instead of just treating the wastewater, we are now able to extract value from it in the form of hydrogen at a lower cost than ever before.

“The next phase of this work is look at optimising the design of the microbial electrolysis cells and further reduce the level of pollutants in the water. This in turn should help produce even more hydrogen!”

Bob Stear, Chief Engineer at Severn Trent adds:

“The performance boost and cost savings demonstrated from this research mean that MEC technology is one step closer to being cost competitive with existing wastewater treatment assets. WMG have also demonstrated that this technology has the potential to create a more circular wastewater treatment process which will be essential to delivering on our long term sustainability goals and Net Zero plans. We’re currently scoping scaling up the technology at our test-bed plant in Redditch.”

ENDS

2 NOVEMBER 2021

NOTES TO EDITORS

High-res images available at:

https://warwick.ac.uk/services/communications/medialibrary/images/september_2021/img_1054.jpg
Caption: Dr Stuart Coles from WMG, University of Warwick with graphene
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/september_2021/img_1054.jpg
Caption: Dr Stuart Coles from WMG, University of Warwick with graphene
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/september_2021/img_1043.jpg
Caption: Dr Stuart Coles from WMG, University of Warwick with graphene
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/september_2021/img_1058.jpg
Caption: A sample of a roll of graphene
Credit: WMG, University of Warwick

For further information please contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk


Margot James, Executive Chair, comments on the Government’s new Net Zero Strategy

Expert comment from Margot James, Executive Chair at WMG, in response to the Government’s Net Zero Strategy.

Margot James, Executive Chair at WMG, University of Warwick 

"The decarbonisation of personal transport, by moving to Electric Vehicles (EVs), will be a major contributor to delivering on this target as EVs become a viable option for the majority of consumers. Viability depends upon EVs being affordable and drivers having access to a reliable network of fast charging in urban and rural networks"

UK Government Net Zero Strategy

Find out more about the new National Skills Framework that has been created by WMG, The Faraday Institution and the High Value Manufacturing Catapult: New National Electrification Skills Framework and Forum could put the UK at the forefront of the green revolution News


WMG experts to present at key EV battery conference

Image of Professor James MarcoWMG’s Professor James Marco, Dr Ben Silverstone and Dr Anwar Sattar will be sharing their expertise at the IMechE’s International EV Batteries 2021: Cost-Effective Engineering for Hybrid and Electric Vehicles next month.

The two-day event which takes place on 9-10 November at Kia Oval, London, explores the latest developments in battery design, testing, thermal management, charging and integration right across the lifecycle of the battery with the aim of creating more resilient and cost-effective systems.

 

On day one, Professor James Marco, WMG’s energy storage expert will present ‘Smart battery development for improved EV safetyImage of Dr Ben Silverstone characterisation,’ and Ben Silverstone, WMG’s UK Electrification Skills Framework Programme Lead, will explain more about the 'National Battery Skills Framework: Collaborating to Elevate UK Industry.’

On the final day, Lead Engineer in Battery Recycling, Anwar Sattar will be presenting ‘Establishing a lithium-ion battery recycling industry in the UK,’ discussing types of waste material found along the supply chain, recycling processes required to deal with material streams, and explaining more about the RECOVAS research project.

Find out more about the conference and book your place here: International EV Batteries 2021: Cost-Effective Engineering for Hybrid and Electric Vehicles | London | CMP7333 (imeche.org)


WMG Professor joins Clean Growth Leadership Network

Image of Professor Kerry KirwanHead of WMG’s Sustainable Materials and Manufacturing Research Group, Professor Kerry Kirwan, has been appointed as a Fellow to the Clean Growth Leadership Network (CGLN).

The CGLN is committed to economic growth for all whilst substantially reducing carbon emissions. The world-class network is made up of Founders, Fellows, Partners and Members united in their commitment to transform to a global clean economy.

Professor Kirwan explains: “I am delighted to have been appointed as a Fellow of the Clean Growth Leadership Network – the opportunity to work with some of the UK’s leading thinkers and practitioners tackling critical issues on the climate change agenda is hugely exciting. I’m really looking forward to introducing them to our research here at WMG and the wider University.”

Professor Kirwan is a specialist in circular economy, sustainable materials, polymer processing and industrial applications. He has extensive experience of developing environmentally friendly materials for application within numerous industries.

Read more about WMG’s Sustainable Materials and Manufacturing research here: Sustainable materials and manufacturing (warwick.ac.uk)


WMG Professors help tackle Net Zero solutions ahead of COP26

Ahead of COP26, voices across the political spectrum and from a range of leading UK universities have come together to produce a unique collection of essays focusing on Net Zero solutions.

Each is co-written by an academic and a Parliamentarian and sets out the areas where work is still needed on climate policy and demonstrates how readily to hand many policy and technical solutions are. It showcases the strength of UK science and research and the level of cross-party support for climate action.

Two WMG Professors have produced essays as part of the series. Professor David Greenwood together with Lilian Greenwood MP, has written ‘Driving the electric vehicle revolution’, and Professor Kerry Kirwan has, with Ben Lake MP, written ‘Overcoming barriers to the circular economy’.

Caroline Lucas MP, Chair of the APPG on Climate Change, explains: “The APPG on Climate Change was founded to coincide with the passing of the 2008 Climate Change Act – a vote that achieved almost unanimous support from across the political spectrum. As current Chair of the APPG on Climate Change, I see great value in striving to maintain and build upon this cross-party consensus where possible. We won’t all agree on the necessary course of action in each sector. And we may not even agree on the speed or scale with which it is necessary to reduce emissions. But we share a common conviction that the climate crisis is a challenge that can and must be surmounted. Deeper engagement between parliamentarians and the scientific community is a vital step in ensuring that we do. It is in that spirit that I fully endorse the work that has gone into producing this collection of essays.”

Image of Professor David GreenwoodIn his essay, co-authored with Lilian Greenwood MP, Professor David Greenwood, CEO of WMG High Value Manufacturing Catapult at the University of Warwick explains: “Whilst the coronavirus pandemic has resulted in devastating personal and economic impacts, it has also caused us to challenge some of our preconceptions. The public has experienced clean air as a result of reduced transport and industrial emissions. People have taken to their bikes in record numbers and with the trials of rental e-scooters there’s a real opportunity for them to replace car and public transport usage for short journeys - at least in good weather.

“These behavioural shifts, along with the persistent drivers of air quality and climate change reinforce the shift to EVs.”

Image of Professor Kerry KirwanKerry Kirwan, WMG’s Professor of Sustainable Materials and Manufacturing explains: “Given the continued focus on how we use our limited planetary resources, the potential for green business models and practices to help our economic recovery post-pandemic and the imminence of COP26, it is great to see such a breadth of collected thinking coming together in this publication – it was a really valuable exercise that I am very pleased to have been part of”.

Read the report and essays in full here: https://www.policyconnect.org.uk/research/net-zero-exchanges-connecting-policy-and-research-climate-action

About the APPCCG

The All-Party Parliamentary Climate Change Group runs events and activities in parliament with the purpose of advancing understanding of policy issues surrounding climate change and enabling cross-party discussion and action on climate policy.

This is not an official feed of the House of Commons or the House of Lords. It has not been approved by either House or its committees. All-Party Parliamentary Groups, forums and commissions are informal groups of Members of both Houses with a common interest in particular issues. The views expressed in the webpages are those of the groups.

About Policy Connect

Policy Connect is a membership-based, not-for-profit, cross-party think tank.

We bring together parliamentarians and government in collaboration with academia, business and civil society to inform, influence and improve UK public policy through debate, research and innovative thinking, so as to improve peoples’ lives.

We lead and manage an extensive network of parliamentary groups, research commissions, forums and campaigns. We are a London living wage and disability confident employer and a Member of Social Enterprise UK, and have been operating since 1995. Our work focuses on key policy areas including: health & accessibility; education & skills; industry, technology & innovation; and sustainability.

We shape policy in Westminster through meetings, events, research and impact work.


Consortium established to tackle decarbonisation of cross-Channel ferry fleet

Image of Dover ferry port and the white cliffsWMG at the University of Warwick is playing a key part in a new research project supporting the UKs pledge to achieve net-zero by 2050.

The seven-month project, entitled the Dover Clean Ferry Power, is a collaboration between the Port of Dover, P&O Ferries, WMG and Schneider Electric, led by Kent Business School at the University of Kent.

The project, which is part of a £20 million programme funded by the Department for Transport, will investigating the decarbonisation of the cross-Channel ferry fleet and in turn support the delivery of the Port of Dover Air Quality Action Plan.

Currently, Port of Dover vessels spend energy through in-harbour activity, open sailing and on-vessel services (such as heating, lighting and hospitality). Some vessels are hybrid; self-charging on-board batteries whilst in open sailing and then using the battery charge whilst in-harbour.

This project will model ferry operations at Dover to establish energy requirements, CO2 effects, air quality and running costs, using this to evaluate technical solutions for both ferries and the port, to accelerate the move to net zero. Insights gained may then have the potential to extend to cruise and cargo operators, as well as adaptation of experienced vessels.

Researchers and engineers at WMG High Value Manufacturing Catapult Centre will be undertaking all of the battery modelling and analytics, plus energy and CO2 modelling for the port of Dover and for vessels using the port– which will impact the locals as well as the environment more widely.

Phil Whiffin, WMG Head of Energy Applications Group, explains: “This project builds on our existing zero emission transport expertise and allows us to apply the MIMO (Multi-Input Multi-Output) modelling technique developed by Dr Andrew McGordon to investigate the complex operations of a port. It will support investment and operation decisions for Dover and the ferry operators and ensure the optimum strategy is in place to move towards net-zero. Dover is an essential trade gateway for the UK so this is a project of great strategic importance and we are pleased to be part of this great consortium.”

Simon Barnes, Project Manager and Funding & Partnership Development Manager within the University of Kent’s Research & Innovation Operations, said: ‘For the University of Kent, this new project builds on a previous successful work with the Port of Dover and is an excellent example of a collaborative project with the University, industry partners and consumers.

‘It is our unified aim to investigate potential avenues that can lead to reductions in carbon emissions as part of the national priority of net-zero. The University of Kent is dedicated to the endeavour through a series of initiatives, with the Dover Clean Ferry Power project as a prime example of the role we play regionally and in applying intensive research to vital national goals.’

ENDS

Notes to Editors

(1)

Clean Maritime Demonstration Competition

The Dover Clean Ferry Power Project is part of the Clean Maritime Demonstration Competition, funded by the Department for Transport and delivered in partnership with Innovate UK.

Announced in March 2020, and part of the Prime Minister’s Ten Point Plan to position the UK at the forefront of green shipbuilding and maritime technology, the Clean Maritime Demonstration Competition is a £20m investment from government alongside a further c.£10mfrom industry to reduce emissions from the maritime sector. The programme is supporting 55 projects across the UK, including projects in Scotland, Northern Ireland and from the South West to the North East of England. As set out in the Clean Maritime Plan (2019), Government funding has been used to support early-stage research relating to clean maritime. The programme will be used to support the research, design and development of zero emission technology and infrastructure solutions for maritime and to accelerate decarbonisation in the sector.

 


UK’s first live micromobility event takes place at WMG, University of Warwick

From left to right: Professor Robin Clark, Dean of WMG at the University of Warwick, John Fox – Programme Director for Micromobility at WMG, Cllr Jim O’Boyle - cabinet member for jobs, regeneration and climate change at Coventry City Council, Margot James- Executive Chair of WMG at the University of Warwick, Mayor of the West Midlands Andy StreetMicromobility refers to small lightweight efficient vehicles, which can be used to make short distance journeys.

Types of micromobility vehicles we could see in our communities include bikes, hover boards, e-bikes and e-scooters. They can be used to save time, avoid congestion, remove parking conundrums and most importantly they use much less energy than a car, therefore contributing towards the Government’s zero-carbon goals.

The future of micromobility is incredibly topical, and to bring together all aspects of it WMG, at the University of Warwick, hosted the UK’s first live micromobility event, bringing together manufacturers in the micromobility sector, regional transport authorities; city councils and local authorities; Government agencies; research organisations and more.

The event not only saw the demonstration of many new exciting and existing micromobility vehicles from e-scooters to e-cargo bikes, but also outlined the opportunities for the UK to lead this sector in battery development and recycling, human factors and behavioural change, materials development and more.

It was also an opportunity to address the challenges the sector faces particularly around lack of infrastructure, policy and regulation.

Programme Director John Fox, from WMG, University of Warwick comments:
“Despite progress on electrification, transport emissions are actually increasing; Micromobility is essential if we are to achieve net zero emissions from this sector. With around 70% of journeys in the UK under 5 miles, Micromobility vehicles can have a huge impact on our emissions. They use typically 5% of the energy of an Electric vehicle to make trips, and their manufacture is also significantly less carbon-intensive.

“There are many other benefits Micromobility offers too, including air quality improvements, greater footfall in highstreets, and taking up much less space than a car to move the same number of people which releases more space in urban areas for other things.

“The conference touched on many of the key issues, including how to make Micromobility safe, accessible, integrated and attractive to new users, and highlighted the need for coordination between government, local authorities and industry. WMG announced our ‘UK Micromobility roadmap” to support this coordination, being developed with Cenex and being progressed through consultation and workshops sessions over the next six months, so watch this space!”

Margot James – Executive Chair of WMG, and Cllr Jim O’Boyle from Coventry City Council have a go in a Hail bikeMargot James, Executive Chair of WMG, University of Warwick adds:
“As a leader in the electrification of transport, WMG, University of Warwick, is at the forefront in the development of high-quality, safe Micromobility vehicles. We are conducting trials with vehicle and infrastructure manufacturers on the Warwick campus, and supporting testing and development of new vehicles and systems in our labs. We’re also working closely with our local and regional authorities to make travel to and from our campus more sustainable, which includes supporting commutes by Micromobility with improved infrastructure and facilities on arrival.”

Andy Street, the Mayor of the West Midlands, said:
“As the home of the green industrial revolution, micromobility has a key role to play in the West Midlands as we look to tackle air pollution to help us reach our #WM2041 climate goal. Earlier this year we launched West Midlands Cycle Hire across eight towns and city centre - with more than 100,000 journeys taken on the bikes in just a few months – and we are also trialling e-scooters across the region, with more than 550,000 trips taken in Birmingham alone over the past year.

“But despite this successful start of both schemes we are of course always open to more innovation and improvement. That’s why it has been brilliant to have the micromobility industry here in the West Midlands, and it has been eye-opening to see what the industry has to offer.”

Councillor Jim O’Boyle, cabinet member for jobs, regeneration and climate change said:
“The innovation shown at the event is a result of the incredible engineering and manufacturing talent that can only be found in Coventry. Our city is leading the green industrial revolution and is at the heart of developing new forms of transport, from the micromobility solutions we have seen at the event to the innovative Coventry Very Light Rail, set to transform how many of us travel.

“It’s great to be with our partners at WMG to raise awareness of the ground-breaking work our city is contributing to the future of clean, green transport.”

ENDS

8 SEPTEMBER 2021

NOTES TO EDITORS

High-res images available at:

https://warwick.ac.uk/services/communications/medialibrary/images/july_2021/070921wuweb-12.jpg
Caption: A WMCA bike stand
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/july_2021/070921wuweb-247.jpg
Caption: People trialling some micromobility vehicles at the event
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/july_2021/070921wuweb-53.jpg
Caption: From left to right: Professor Robin Clark, Dean of WMG at the University of Warwick, John Fox – Programme Director for Micromobility at WMG, Cllr Jim O’Boyle - cabinet member for jobs, regeneration and climate change at Coventry City Council, Margot James- Executive Chair of WMG at the University of Warwick, Mayor of the West Midlands Andy Street
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/july_2021/070921wuweb-65.jpg
Caption: Margot James- Executive Chair of WMG at the University of Warwick with Mayor of the West Midlands Andy Street
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/july_2021/070921wuweb-62.jpg
Caption: From left to right: Cllr Jim O’Boyle - cabinet member for jobs, regeneration and climate change at Coventry City Council, Margot James- Executive Chair of WMG at the University of Warwick and Andy Street - Mayor of the West Midlands
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/july_2021/070921wuweb-69.jpg
Caption: Mayor Andy Street with some of the micromobility vehicles showcased
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/july_2021/070921wuweb-43.jpg
Caption: Margot James – Executive Chair of WMG, and Cllr Jim O’Boyle from Coventry City Council have a go in a Hail bike
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/july_2021/070921wuweb-50.jpg
Caption: Margot James – Executive Chair of WMG at the University of Warwick on a Hail bike
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/july_2021/070921wuweb-222.jpg
Caption: People at a West Midlands Transport Hub with a West Midlands Cycle Hire bike and a VOI e-scooter
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/july_2021/070921wuweb-72.jpg
Caption: A West Midlands Cycle Hire bike
Credit: WMG, University of Warwick

For further information please contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk


WMG professor to lead research and network strand for £147 million Made Smarter Innovation programme

Head and shoulders shot of Jan Godsell, Professor of Operations and Supply Chain Strategy at WMG, University of Warwick.

Recognised for her expertise in supply chain design and strategy, as well as process improvement and sustainability, Jan Godsell, Professor of Operations and Supply Chain Strategy at WMG, University of Warwick, has been appointed as a co-director of the research and network strand within the £147 million Made Smarter Innovation programme.

Taking on the UK Research and Innovation role with immediate effect, Professor Godsell will be working with the Economic and Social Research Council to lead the research and network strand of the programme alongside fellow newly appointed co-director Jillian MacBryde, Professor of Innovation and Operations Management at the University of Strathclyde.

Together they will look to expand the stakeholder community and research into a Made Smarter Network Plus on an initial five-month agreement working alongside the Challenge Director and programme team.

The Made Smarter Network Plus aims to bring together insights across the wider UK manufacturing sector, bolstering digital technology innovation opportunities in manufacturing through engagement and collaboration.

Commenting on her new role, Professor Godsell said:

“The scope for improving the flexibility, sustainability and productivity of the UK manufacturing sector is huge, so I was keen to take this role to partner with Jillian on introducing research and new ideas to the industry.

“Introducing these important external influences in an effective way will require a deep understanding of the specific needs and demands on the manufacturing sector, which I hope I can bring to the Network Plus model to ensure it thrives for the benefit of all involved.”

Professor Godsell provides advice on strategy and activity across government and industry as part of her existing roles on various supply chain groups, including the Department for Business, Energy and Industrial Strategy Supply Chain Resilience Advisory Group.

Chris Courtney, Challenge Director for Made Smarter Innovation, said:

“Digital technologies have the power to radically transform how we manufacture and deliver the products and services of the future and deliver a more resilient, prosperous economy with fundamental changes to the nature of work.

“A key part of delivering an optimal future in manufacturing will be enabled by harnessing the insights from the broader economic, social, regulatory and political sciences.

“I’m delighted to welcome Jan and Jill to the overall effort as co-directors, combining two of our leading academics in this space bringing leadership, insight of with a passion for manufacturing.

“I’m excited to get this work underway and to support Jill and Jan as they reach out to the broad network of capability to engage and shape a vital and exciting programme of work.”

Register for the upcoming Made Smarter Network Plus Townhall Event on 13th May here to find out more about the programme and how to get involved.

Mon 10 May 2021, 12:45 | Tags: Supply Chains Jan Godsell Manufacturing Sustainability

Latest news Newer news Older news