Coronavirus (Covid-19): Latest updates and information
Skip to main content Skip to navigation

Computer Science News

Select tags to filter on

Suzanne Candanedo wins UKESF and UltraSoC Automotive Electronics Competition 2020

Suzanne Candanedo, who recently graduated from Computer Systems Engineering at the University of Warwick, has won the UKESF and UltraSoC Automotive Electronics Competition 2020.

The competition requires entrants to produce a 'think piece' about the future of cyber security for connected and autonomous vehicles, written along the lines of a blog post in style rather than a formal essay. You can read Suzy's winning entry here.

Fri 16 Oct 2020, 12:50 | Tags: Undergraduate Systems and Security

Six papers accepted to the 32nd SODA conference

We are pleased to report that members of the department's Theory and Foundations research theme have had 6 papers accepted to the 32nd Annual ACM-SIAM Symposium on Discrete Algorithms. SODA is the top international conference on algorithms research. The papers are:

  • "A Structural Theorem for Local Algorithms with Applications to Coding, Testing, and Privacy" by Marcel Dall'Agnol, Tom Gur, Oded Lachish;
  • "On a combinatorial generation problem of Knuth" by Arturo Merino, Ondřej Mička, Torsten Mutze;
  • "Dynamic Set Cover: Improved Amortized and Worst-Case Update Times" by Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, Xiaowei Wu;
  • "Online Edge Coloring Algorithms via the Nibble Method" by Sayan Bhattacharya, Fabrizio Grandoni, David Wajc;
  • "FPT Approximation for FPT Problems" by Daniel Lokshtanov, Pranabendu Misra, M. S. Ramanujan, Saket Saurabh, Meirav Zehavi.
  • "Polyhedral value iteration for discounted games and energy games" - Alexander Kozachinskiy
Fri 09 Oct 2020, 20:53 | Tags: Research Theory and Foundations

Adam Shephard joins the TIA lab

Adam Shephard

Adam Shephard has just joined the department as a Research Fellow and is currently working in the Tissue Image Analytics (TIA) Lab on the ANTICIPATE project funded by Cancer Research UK. He has recently submitted his thesis on the application of deep learning to paediatric MRI at Aston University, under the supervision of Prof. Amanda Wood and Dr. Jan Novak. His role in the ANTICIPATE project will be concerned with the development and application of deep learning techniques to digitized histology slides to aid in the more efficient grading of head and neck tumours, to ultimately provide more accurate patient prognoses.


EPSRC funding success for Dr. Ramanujan Sridharan

RamanujanWe are delighted to report that Dr Ramanujan Sridharan from the Theory and Foundations (FoCS) research theme at the Computer Science Department has received a prestigious EPSRC New Investigator Award. The approximately £264K project titled "New frontiers in Parameterizing Away From Triviality” aims to develop novel notions of graph edit distance and investigate their connections to efficient solvability of computationally hard problems.
The reviewers commented:
the proposal identifies research questions that are novel, has the potential to have a broader impact both within and outside academia and it is an exciting project that will break new ground.
Mon 21 Sep 2020, 20:38 | Tags: People Grants Highlight Theory and Foundations

Zhenjian Lu joins the department as a Research Fellow

We're happy to announce that Zhenjian Lu has joined the department as a Research Fellow. He is currently funded by the project "New approaches to unconditional computational lower bounds", with support from the Royal Society.

Zhenjian Lu will soon defend a PhD thesis in computational complexity at Simon Fraser University under the supervision of Prof. Valentine Kabanets and Prof. Andrei Bulatov.

He is primarily interested in Computational Complexity, Circuit Lower Bounds, Algorithms, Pseudorandomness, Analysis of Boolean Functions, and Meta-Complexity.

Sat 19 Sep 2020, 16:55 | Tags: People Theory and Foundations

Exoplanet Validation with Machine Learning: 50 new validated Kepler planets

Dr Theo Damoulas (Department of Computer Science) along with Dr David Armstrong (Department of Physics) and Jevgenij Gamper (Department of Mathematics) have developed probabilistic machine learning algorithms that can separate out real planets from fake ones in the large samples of thousands of candidates found by telescope missions such as NASA’s Kepler and TESS. The results of which have led to fifty new confirmed planets, the first to be not only ranked but also probabilistically validated by machine learning.

The paper "Exoplanet Validation with Machine Learning: 50 new validated Kepler planets" has been accepted to the Monthly Notice of the Royal Astronomical Society, DOI: 10.1093/mnras/staa2498

Thu 10 Sep 2020, 13:30 | Tags: Research Artificial Intelligence

Wearable IoT Electronic Nose for Urinary Incontinence Detection

Work performed by Computer Systems Engineering student Michael Shanta for his 3rd year project, supervised by Dr. Marina Cole and Dr. Siavash Esfahani in the School of Engineering, was written up in a paper that was recently accepted for presentation at the IEEE Sensors 2020 Conference.

For his 3rd year project Michael worked on developing machine learning techniques for an Electronic Nose in order to classify odours based on the sensor responses. The system aims to detect incontinence incidents, allowing alerts to be sent to relevant personnel from an IoT network via a cloud server.


Older news