Skip to main content Skip to navigation

Empirical Modelling for Participative Business Process Reengineering


The purpose of this thesis is to introduce a new broad approach to computing -- Empirical Modelling (EM) -- and to propose a way of applying this approach for system development so as to avoid the limitations of conventional approaches and integrate system development with business process reengineering (BPR). Based on the concepts of agency, observable and dependency, EM is an experience-based approach to modelling with computers in which the modeller interacts with an artefact through continuous observations and experiments. It is a natural way of working for business process modelling because the modeller is involved in, and takes account of, the real world context. It is also adaptable to a rapidly changing environment as the computer-based models serve as creative artefacts with which the modeller can interact in a situated and open-ended manner.

This thesis motivates and illustrates the EM approach to new concepts of participative BPR and participative process modelling. That is, different groups of people, with different perceptions, competencies and requirements, can be involved during the process of system development and BPR, rather than just being involved at an early stage. This concept aims to address the well-known high failure rate of BPR. A framework SPORE (situated process of requirements engineering), which has been proposed to guide the process of cultivating requirements in a situated manner, is extended to participative BPR (i.e. to support many users in a distributed environment). Two levels of modelling are proposed for the integration of contextual understanding and system development. A comparison between EM and object-orientation is also provided to give insight into how EM differs from current methodologies and to point out the potential of EM in system development and BPR. The ISMs (interactive situation models), built using the principles and tools of EM, are used to form artefacts during the modelling process. A warehouse and logistics management system is taken as an illustrative case study for applying this framework.