Core modules
You will take core lecture modules which are concentrated in the first two years. These introduce and develop the fundamental concepts, such as those of quantum theory and electromagnetism, and cover the mathematics used in physics.
You will also choose modules from lists of options. These are largely concerned with seeing how the basic concepts can explain the phenomena we observe. Examples include the light emitted and absorbed by stellar matter, and the response of the liquids, solids and gases, which we meet on a daily basis, to the mechanical, electrical and thermal forces acting on them.
In the first year, you take essential (core) modules. In the second and third years there is considerable freedom to choose modules. By then you will have a good idea of your main interests and be well placed to decide which areas to study in greater depth. In effect you design your own degree.
Year One
Mathematics for Physicists
Physicists use mathematics to state the basic laws of nature and to analyse their consequences quantitatively and rigorously. The module introduces you to concepts and techniques that will be assumed by future modules. These include: complex numbers, functions of a continuous real variable, integration, functions of more than one variable and multiple integration. You will revise relevant parts of the A Level syllabus, to cover the mathematical knowledge to undertake first year physics modules, and to prepare you for mathematics and physics modules in subsequent years.
Read more about the Mathematics for Physicists moduleLink opens in a new window, including the methods of teaching and assessment (content applies to 2024/25 year of study).
Classical Mechanics and Special Relativity
You will study Newtonian mechanics emphasising the conservation laws inherent in the theory. These have a wider domain of applicability than classical mechanics (for example they also apply in quantum mechanics). You will also look at the classical mechanics of oscillations and of rotating bodies. The module then explains why the failure to find the ether was such an important experimental result and how Einstein constructed his theory of special relativity. You will cover some of the consequences of the theory for classical mechanics and some of the predictions it makes, including: the relation between mass and energy, length-contraction, time-dilation and the twin paradox.
Read more about the Classical Mechanics and Special Relativity moduleLink opens in a new window, including the methods of teaching and assessment (content applies to 2024/25 year of study).
Physics Foundations
You will learn about dimensional analysis, thermodynamics and waves. Often the qualitative features of systems can be understood (at least partially) by thinking about which quantities in a problem are allowed to depend on each other on dimensional grounds. Thermodynamics is the study of heat flow and how it can lead to useful work. Even though the results are universal, the simplest way to introduce this topic is via the ideal gas, whose properties are discussed and derived in some detail. Finally, waves are time-dependent variations about some time-independent (often equilibrium) state. You will look at phenomena like the Doppler effect (this is the effect that the frequency of a wave changes as a function of the relative velocity of the source and observer), the reflection and transmission of waves at boundaries and some elementary ideas about diffraction and interference patterns.
Read more about the Physics Foundations moduleLink opens in a new window, including the methods of teaching and assessment (content applies to 2024/25 year of study).
Electricity and Magnetism
This module is largely concerned with the great developments in electricity and magnetism, which took place during the nineteenth century. The origins and properties of electric and magnetic fields in free space, and in materials, are tested in some detail and all the basic levels up to, but not including, Maxwell's equations are considered. In addition, the module deals with both dc and ac circuit theory including the use of complex impedance. You will be introduced to the properties of electrostatic and magnetic fields, and their interaction with dielectrics, conductors and magnetic materials.
Read more about the Electricity and Magnetism moduleLink opens in a new window, including the methods of teaching and assessment (content applies to 2024/25 year of study).
Physics Programming Workshop
This module introduces the Python programming language. It is quick to learn and encourages good programming style. Python is an interpreted language, which makes it flexible and easy to share. It allows easy interfacing with modules that have been compiled from faster C or Fortran code. It is widely used throughout physics and there are many downloadable, free-to-use codes available. The module also looks at the visualisation of data.
Read more about the Physics Programming Workshop moduleLink opens in a new window, including the methods of teaching and assessment (content applies to 2024/25 year of study).
Quantum Phenomena
This module explains how classical physics is unable to explain the properties of light, electrons and atoms. (Theories in physics that make no reference to quantum theory are usually called classical theories.) It covers the most important contributions to the development of quantum physics including: wave-particle 'duality', de Broglie's relation and the Schrodinger equation. It also looks at applications of quantum theory to describe elementary particles including their classification by symmetry, how this allows us to interpret simple reactions between particles and how elementary particles interact with matter.
Read more about the Quantum Phenomena moduleLink opens in a new window, including the methods of teaching and assessment (content applies to 2024/25 year of study).
Astronomy
The Universe contains a bewildering variety of objects - black-holes, red giants, white dwarfs, brown dwarfs, gamma-ray bursts and globular clusters. The module introduces these, and shows how, with the application of physics, we have come to know their distances, sizes, masses and natures. The module starts with the Sun and planets and moves on to the Universe as a whole.
Read more about the Astronomy moduleLink opens in a new window, including the methods of teaching and assessment (content applies to 2024/25 year of study).
Physics Laboratory
The module introduces experimental science and teaches the skills required for successful laboratory work. These include how to work with apparatus, how to keep a laboratory notebook, how to handle data and quantify errors and how to write scientific reports. The module also asks you to think critically and solve problems. Initial experiments build core skills while later experiments explore important areas of physics.
Read more about the Physics Laboratory moduleLink opens in a new window, including the methods of teaching and assessment (content applies to 2024/25 year of study).
Year Two
Statistical Mechanics, Electromagnetic Theory and Optics
Any macroscopic object we meet contains a large number of particles, each of which moves according to the laws of mechanics (which can be classical or quantum). Yet we can often ignore the details of this microscopic motion and use a few average quantities such as temperature and pressure to describe and predict the behaviour of the object. Why we can do this, when we can do this and how to do it are discussed in the first half of this module.
We also develop the ideas of first year electricity and magnetism into Maxwell's theory of electromagnetism. Establishing a complete theory of electromagnetism has proved to be one of the greatest achievements of physics. It was the principal motivation for Einstein to develop special relativity, it has served as the model for subsequent theories of the forces of nature and it has been the basis for all of electronics and optics (radios, telephones, computers, the lot...).
Read more about the Statistical Mechanics, Electromagnetic Theory and Optics moduleLink opens in a new window, including the methods of teaching and assessment (content applies to 2024/25 year of study).
Quantum Mechanics and its Applications
In the first part of this module you will use ideas, introduced in the first year module, to explore atomic structure. This includes the time-independent and the time-dependent Schrödinger equations for spherically symmetric and harmonic potentials, angular momentum and hydrogenic atoms. The second half of the module looks at many-particle systems and aspects of the Standard Model of particle physics. It introduces the quantum mechanics of free fermions and discusses how it accounts for the conductivity and heat capacity of metals and the state of electrons in white dwarf stars.
Read more about the Quantum Mechanics and its Applications moduleLink opens in a new window, including the methods of teaching and assessment (content applies to 2024/25 year of study).
Physics Skills
This module develops experimental skills in a range of areas and includes the design and testing of a functional electronic circuit. The module also introduces the concepts involved in controlling an experiment using a computer. The module explores information retrieval and evaluation, and the oral and written presentation of scientific material.
Read more about the Physics Skills moduleLink opens in a new window, including the methods of teaching and assessment (content applies to 2024/25 year of study).
Mathematical Methods for Physicists
You will review the techniques of ordinary and partial differentiation and ordinary and multiple integration. You will develop your understanding of vector calculus and discuss the partial differential equations of physics (Term 1). The theory of Fourier transforms and the Dirac delta function are also covered. Fourier transforms are used to represent functions using linear combinations of sines and cosines, and are a powerful tool in physics and applied mathematics. The examples used to illustrate the module are drawn mainly from interference and diffraction phenomena in optics (Term 2).
Read more about the Mathematical Methods for Physicists moduleLink opens in a new window, including the methods of teaching and assessment (content applies to 2024/25 year of study).
Year Three
Physics Project
The project will provide you with experience of working in a research environment. You will work, normally in pairs, on an extended project which may be experimental, computational or theoretical (or indeed a combination of these). Through discussions with your supervisor you will establish a plan of work which you will frequently review as you progress. In general, the project will not be closely prescribed and will contain an investigative element.
Read more about the Physics Project moduleLink opens in a new window, including the methods of teaching and assessment (content applies to 2024/25 year of study).
Communicating Science
Employers look for many things in would-be employees. Sometimes they will be looking for specific knowledge, but often they will be more interested in general skills, frequently referred to as transferable skills. One such transferable skill is the ability to communicate effectively, both orally and in writing. Over the past two years you may have had experience in writing for an academic audience in the form of your laboratory reports. The aim of this module is to introduce you to the different approaches required to write for other audiences. This module will provide you with experience in presenting technical material in different formats to a variety of audiences.
Read more about the Communicating Science moduleLink opens in a new window, including the methods of teaching and assessment (content applies to 2024/25 year of study).
Quantum Physics of Atoms
The basic principles of quantum mechanics are applied to a range of problems in atomic physics. The intrinsic property of spin is introduced and its relation to the indistinguishability of identical particles in quantum mechanics discussed. Perturbation theory and variational methods are described and applied to several problems. The hydrogen and helium atoms are analysed and the ideas that come out from this work are used to obtain a good qualitative understanding of the periodic table. In this module, you will develop the ideas of quantum theory and apply these to atomic physics.
Read more about the Quantum Physics of Atoms moduleLink opens in a new window, including the methods of teaching and assessment (content applies to 2024/25 year of study).
Optional modules
Optional modules can vary from year to year. Example optional modules may include:
- Condensed Matter Physics
- Scientific Computing
- The Earth and its Atmosphere
- Electrodynamics
- Plasma Physics and Fusion
- The Standard Model
- Galaxies and Cosmology
- Statistical Physics
- Physics of Life and Medicine
- Black Holes, White Dwarfs and Neutron Stars