Applied Microeconomics
Applied Microeconomics
The Applied Microeconomics research group unites researchers working on a broad array of topics within such areas as labour economics, economics of education, health economics, family economics, urban economics, environmental economics, and the economics of science and innovation. The group operates in close collaboration with the CAGE Research Centre.
The group participates in the CAGE seminar on Applied Economics, which runs weekly on Tuesdays at 2:15pm. Students and faculty members of the group present their ongoing work in two brown bag seminars, held weekly on Tuesdays and Wednesdays at 1pm. Students, in collaboration with faculty members, also organise a bi-weekly reading group in applied econometrics on Thursdays at 1pm. The group organises numerous events throughout the year, including the Research Away Day and several thematic workshops.
Our activities
Work in Progress seminars
Tuesdays and Wednesdays 1-2pm
Students and faculty members of the group present their work in progress in two brown bag seminars. See below for a detailed scheduled of speakers.
Applied Econometrics reading group
Thursdays (bi-weekly) 1-2pm
Organised by students in collaboration with faculty members. See the Events calendar below for further details
People
Academics
Academics associated with the Applied Microeconomics Group are:
Natalia Zinovyeva
Co-ordinator
Jennifer Smith
Deputy Co-ordinator
Research Students
Events
CRETA Seminar - Omer Tamuz (Caltech)
Title: Decomposable stochastic choice with Fedor Sandomirskiy
Abstract: We investigate inherent stochasticity in individual choice behavior across diverse decisions. Each decision is modeled as a menu of actions with outcomes, and a stochastic choice rule assigns probabilities to actions based on the outcome profile. Outcomes can be monetary values, lotteries, or elements of an abstract outcome space. We characterize decomposable rules: those that predict independent choices across decisions not affecting each other. For monetary outcomes, such rules form the one-parametric family of multinomial logit rules. For general outcomes, there exists a universal utility function on the set of outcomes, such that choice follows multinomial logit with respect to this utility. The conclusions are robust to replacing strict decomposability with an approximate version or allowing minor dependencies on the actions’ labels. Applications include choice over time, under risk, and with ambiguity.