Skip to main content Skip to navigation

Applied Microeconomics

Applied Microeconomics

The Applied Microeconomics research group unites researchers working on a broad array of topics within such areas as labour economics, economics of education, health economics, family economics, urban economics, environmental economics, and the economics of science and innovation. The group operates in close collaboration with the CAGE Research Centre.

The group participates in the CAGE seminar on Applied Economics, which runs weekly on Tuesdays at 2:15pm. Students and faculty members of the group present their ongoing work in two brown bag seminars, held weekly on Tuesdays and Wednesdays at 1pm. Students, in collaboration with faculty members, also organise a bi-weekly reading group in applied econometrics on Thursdays at 1pm. The group organises numerous events throughout the year, including the Research Away Day and several thematic workshops.

Our activities

Work in Progress seminars

Tuesdays and Wednesdays 1-2pm

Students and faculty members of the group present their work in progress in two brown bag seminars. See below for a detailed scheduled of speakers.

Applied Econometrics reading group

Thursdays (bi-weekly) 1-2pm

Organised by students in collaboration with faculty members. See the Events calendar below for further details

People

Academics

Academics associated with the Applied Microeconomics Group are:


Natalia Zinovyeva

Co-ordinator

Jennifer Smith

Deputy Co-ordinator


Events

Show all calendar items

Econometrics Seminar - Yuichi Kitamura (Yale)

- Export as iCalendar
Location: S2.79

Title: ESTIMATING STOCHASTIC BLOCK MODELS IN THE PRESENCE OF COVARIATES (joint with Louise Laage)

Abstract: In the standard stochastic block model for networks, the probability of a connection between two nodes, often referred to as the edge probability, depends on the unobserved communities each of these nodes belongs to. We consider a flexible framework in which each edge probability, together with the probability of community assignment, are also impacted by observed covariates. We propose a computationally tractable two-step procedure to estimate the conditional edge probabilities as well as the community assignment probabilities. The first step relies on a spectral clustering algorithm applied to a localized adjacency matrix of the network. In the second step, k-nearest neighbor regression estimates are computed on the extracted communities. We study the statistical properties of these estimators by providing non-asymptotic bounds.

Show all calendar items