Skip to main content Skip to navigation

Quantitative, Systems & Engineering Biology Publications

See our "Latest Publications" page for a full list of SLS publications

Quantitative, Systems & Engineering Biology

One-two punch : phage-antibiotic synergy observed against staphylococcus aureus by combining pleurotin and phage K

Michaël Dagne Tadesse, Nala Ali, Martha White, Lijiang Song, Fabrizio Alberti, Antonia P. Sagona 

There is an urgent need for novel antimicrobial therapies, chemical and nonantibiotic. The basidiomycota-derived, secondary metabolite pleurotin has been shown to be effective against Gram-positive bacteria, while bacteriophages could be the ultimate nonantibiotic alternative. In this study, the combination of pleurotin and phage K targeting S. aureus was examined. Pleurotin was isolated from the basidiomycota fungus Hohenbuehelia grisea. The cytotoxicity of pleurotin was assessed in two human cell lines in comparison to pleuromutilin, vancomycin, and phage K. The antibiotics were then tested independently or in combination with phage K against two S. aureus strains. Cytotoxicity of pleurotin in human cells was comparable to vancomycin and pleuromutilin. Results suggest that adding phage K has a synergistic effect and can lower the MIC for pleurotin, pleuromutilin, and vancomycin. This demonstrates that pleurotin could be a viable antistaphylococcal drug.

ACS Omega. March 2025

Impact of Phage Therapy on Pseudomonas syringae pv. syringae and Plant Microbiome Dynamics Through Coevolution and Field Experiments

Matevz Papp-Rupar, Emily R. Grace, Naina Korotania, Maria-Laura Ciusa, Robert W. Jackson, Mojgan Rabiey

Isolation of phages targeting the cherry pathogen Pseudomonas syringae pv. syringae (Pss) led to five distinct phage genotypes. Building on previous in vitro coevolution experiments, the coevolution of the five phages (individually and as a cocktail) with Pss on cherry leaves was conducted in glasshouse and field experiments. Phages effectively reduced Pss numbers on detached leaves, with no evidence of phage resistance emerging in the bacterial population. Field application of phages in a cherry orchard in Southeast England evaluated phage survival, viability and impact on bacterial populations and the microbial community. The bacterial population and phages persisted in the leaf and shoot environment as long as the bacterial host was present. In contrast to in vitro studies, the plant environment constrained the emergence of phage resistant Pss populations.

Environmental Microbiology. March 2025

Single-calibration cell size measurement with flow cytometry

Philip Davies, Massimo Cavallaro, Daniel Hebenstreit

Measuring the size of individual cells in high-throughput experiments is often important in biomedical research and applications.  In this paper, we demonstrate that it is possible to calibrate flowcytometry laser scatter signals with accurate measures of cell diameter from separate devices and that the calibration can be conserved upon changes in the laser settings A straightforward procedure is presented that relates the flow cytometric scatter parameters to the absolute size measurements using linear models, along with a linear transformation that converts between different instrument settings on the flow cytometer. Our method makes it possible to record on a flow cytometer a cell's size in absolute units and correlate it with other features that are recorded in parallel in the fluorescence detection channels.

Cytometry Part A March 2025

Leishmaniasis in deployed military populations : a systematic review and meta-analysis

Niba Rawlings, Ngwa, Bailey, Mark and Courtenay, Orin

This systematic review and meta-analysis of data specific to military populations aims to identify knowledge gaps to mitigate sand fly exposure and Leishmania transmission during deployments. Regular use of long-lasting insecticidal nets to mitigate sand fly exposure demonstrated high potential effectiveness than other reported personal protective measures (PPMs) which yielded mixed or inconclusive results. In summary, the systematic review revealed the substantial variability between study designs and statistical integrity. There is need for more consistent and robustly designed studies including well-define controls and replication. Future studies would be advised to explore the long-term effectiveness and practicality of PPMs, both individually and in combination, across diverse deployment settings.

PLoS Neglected Tropical Diseases. March 2025

Historic manioc genomes illuminate traditional maintenance of diversity under long-lived clonal cultivation

Logan Kistler, Fabio de Oliveira Freitas, Rafal M. Gutaker, S. Yoshi Maezumi, Jazmín Ramos-Madrigal, Marcelo F. Simon, J. Moises Mendoza Flores, Sergei V. Drovetski, ¬Hope Loiselle, Eder Jorge de Oliveira, Eduardo Alano Vieira, Luiz Joaquim Castelo Branco Carvalho, Marina Ellis Perez, Audrey T. Lin, Hsiao-Lei Liu, Rachel Miller, Natalia A. S. Przelomska, Aakrosh Ratan, Nathan Wales, Kevin Wann, Shuya Zhang, Magdalena García, Daniela Valenzuela, Francisco Rothhammer, Calogero M. Santoro, Alejandra I. Domic, José M. Capriles, Robin Allaby

Manioc—also called cassava and yuca—is among the world’s most important crops, originating in South America in the early Holocene. Domestication for its starchy roots involved a near-total shift from sexual to clonal propagation, and almost all manioc worldwide is now grown from stem cuttings. In this work, we analyze 573 new and published genomes, focusing on traditional varieties from the Americas and wild relatives from herbaria, to reveal the effects of this shift to clonality. We observe kinship over large distances, maintenance of high genetic diversity, intergenerational heterozygosity enrichment, and genomic mosaics of identity-by-descent haploblocks that connect all manioc worldwide. Interviews with Indigenous traditional farmers in the Brazilian Cerrado illuminate how traditional management strategies for sustaining, diversifying, and sharing the gene pool have shaped manioc diversity.

Science. March 2025

Press release

Genetic and Pharmacological Inhibition of Metabotropic Glutamate Receptor Signalling Extends Lifespan in Drosophila

Cui Guan, Abigail Otchere, Mihails Laskovs, Irene Papatheodorou, Cathy Slack

Invertebrate models have been instrumental in advancing our understanding of the molecular mechanisms of ageing. The isolation of single gene mutations that both extend lifespan and improve age-related health have identified potential targets for therapeutic intervention to alleviate age-related morbidity. Here, we find that genetic loss of function of the G protein-coupled metabotropic glutamate receptor (DmGluRA) in Drosophila extends the lifespan of female flies. This longevity phenotype was accompanied by lower basal levels of oxidative stress and improved stress tolerance, and differences in early-life behavioural markers. Gene expression changes in DmGluRA mutants identified reduced ribosome biogenesis, a hallmark of longevity, as a key process altered in these animals. We further show that the pro-longevity effects of reduced DmGluRA signalling are dependent on the fly homologue of Fragile X Mental Retardation Protein (FMRP), an important regulator of ribosomal protein translation. Importantly, we can recapitulate lifespan extension using a specific pharmacological inhibitor of mGluR activity. Hence, our study identifies metabotropic glutamate receptors as potential targets for age-related therapeutics.

Aging Cell. February 2025

Quantifying integrated pest management adoption in food horticulture

Jennifer Byrne, Robert Lillywhite, Henry Creissen, Fiona Thorne, Lael Walsh

Integrated Pest Management (IPM) is a crop health paradigm offering a framework for sustainable pest management. To optimise adoption it is necessary to understand how growers use IPM, to identify measures lagging in uptake or suitability for uptake and to explore limitations to both. This study has quantified IPM adoption using Irish food horticulture as a case study, through the development and application of an IPM metric based on field, protected and top fruit production systems. While our results demonstrated that IPM has been adopted, it also suggested that there is room for improvement. This presentation of an IPM measurement instrument for temperate horticulture systems provides the means to benchmark IPM performance and chart cumulative progress. This is useful to policy makers and IPM stakeholders to compare performance on a national and cross-national basis with a view to refining best practice, while defining specific components of IPM for improvement.

Crop Protection. February 2025

Stephen Parnell Publications

Assessing delimiting strategies to identify the infested zones of quarantine plant pests and diseases

Koh, Joshua, Cunnifee, Nik and Parnell, Stephen

Following the discovery of a quarantine plant pest or disease, delimitation is urgently conducted to define the boundaries of the infested area, typically through surveys that detect the presence or absence of the pest. Swift and accurate delimitation is crucial after a pest or pathogen enters a new region for containment or eradication. In this study, we used an individual-based model to simulate the spread of Huanglongbing (citrus greening), a priority EU pest, and evaluated three delimiting strategies across various host distribution landscapes. We found that an adaptive strategy was most effective, especially when tailored to the polycyclic nature of the pest. This underscored the need for specific delimiting approaches based on the epidemiological characteristics of the target pest.

Scientific Reports. February 2025


Developing epidemiological preparedness for a plant disease invasion: Modelling citrus huánglóngbìng in the European Union

John Ellis, Elena Lázaro, Beatriz Duarte, Tomás Magalhães, Amílcar Duarte, Jacinto Benhadi-Marín, José Alberto Pereira, Antonio Vicent, Stephen Parnell, Nik J. Cunniffe

Huánglóngbìng (HLB) is a bacterial disease of citrus that has significantly impacted Brazil and the United States, although citrus production in the Mediterranean Basin remains unaffected. By developing a mathematical model of spread in Spain, we tested surveillance and control strategies before any future HLB entry in the EU. We found while some citrus production might be maintained by roguing, this requires extensive surveillance and significant chemical control, perhaps also including testing of psyllids (which spread the pathogen) for bacterial DNA. Our work highlights the key importance of early detection (including asymptomatic infection) and vector control for HLB management.

Plants, People, Planet. February 2025

Controlling endemic foot-and-mouth disease: Vaccination is more important than movement bans. A simulation study in the Republic of Turkey

Glen Guyver-Fletcher, Erin E. Gorsich, Chris Jewell, Michael J. Tildesley

In this article we present a spatially-explicit stochastic metapopulation model to simulate the spread and control of foot-and-mouth disease (FMD) in an endemic setting. We parameterise and validate the model using detailed outbreak data from the Republic of Turkey, 2001–2012. Subsequently, we assess the efficacy of ring vaccination, mass vaccination, and livestock movement restrictions with regards to incidence-reduction and likelihood of eradication. Our results suggest countries wishing to control the disease within their borders should focus on comprehensive surveillance and vaccination campaigns as their main policy goals. In summary, vaccination-based policies are more effective than movement restrictions in the endemic context.

Infectious Disease Modelling.; February 2025

Knockout of fatty acid elongase1 homeoalleles in amphidiploid Brassica juncea leads to undetectable erucic acid in seed oil

Nelesh Patra , Guy C. Barker , Mrinal K. Maiti

Indian mustard (Brassica juncea L.) seed oil offers valuable dietary benefits due to a balanced ratio of human essential fatty acids, the traditional high oil-yielding varieties contain an elevated level of erucic acid (EA, C22:1) associated with adverse health effects. Therefore, developing low erucic acid (LEA) mustard cultivars is crucial for broader utilization and consumer safety. In this study, CRISPR/Cas9 genome editing tool was employed to disrupt the fatty acid elongase1 (FAE1) gene that encodes a key enzyme in EA biosynthesis in two high erucic acid (HEA) B. juncea cultivars, PCR7 (∼39% EA) and JD6 (∼45% EA). Our findings underscore the effectiveness of CRISPR/Cas9 technology for editing B. juncea genome, developing plant lines producing LEA seed oil with improved nutritional quality and broadening the utility of this important oilseed crop for food and non-food applications.

Plant Physiology & Biochemistry. February 2025

Phylodynamic analysis of a prolonged meningococcal epidemic reveals multiple introductions and pre-epidemic expansion

Zuyu Yang, Heather Davies, Jane Clapham, Liza Lopez, Holly B Bratcher, Audrey Tong, Xavier Didelot, Martin C.J. Maiden, Philip E. Carter, Xiaoyun Ren

Neisseria meningitidis is the causative agent of invasive meningococcal disease (IMD), a form of bacterial meningitis and septicaemia, leading to isolated cases, outbreaks, and epidemics worldwide. Between 1991 and 2008, Aotearoa/New Zealand (NZ) experienced a prolonged hyperendemic group B IMD outbreak caused by the NZMenB epidemic strain. To understand NZMenB origin and initiation we used phylodynamic tools to analyse approximately 97 % of all NZMenB isolates submitted to the NZ Meningococcal Reference Laboratory from 1990 to 2019.. Our evidence from molecular dating and clonal expansion analysis suggests that NZMenB was circulating and had expanded before the epidemic. Comparison with international data showed multiple importations and re-introductions of NZMenB into NZ, while not suggesting close relationships with international variants. We propose the NZMenB epidemic may have been triggered by increasing societal inequality and household crowding resulting from government policies at the time.

Infection, Genetics and Evolution. February 2025

Piperideine-6-carboxylic acid regulates vitamin B6 homeostasis and modulates systemic immunity in plants

Huazhen Liu, Lakshminarayan M. Iyer, Paul Norris, Ruiying Liu, Keshun Yu, Murray Grant, L. Aravind, Aardra Kachroo & Pradeep Kachroo

Dietary consumption of lysine in humans leads to the biosynthesis of Δ1-piperideine-6-carboxylic acid (P6C), with elevated levels linked to the neurological disorder epilepsy. Here we demonstrate that P6C biosynthesis is also a critical component of lysine catabolism in Arabidopsis thaliana. P6C regulates vitamin B6 homeostasis, and increased P6C levels deplete B6 vitamers, resulting in compromised plant immunity. We further establish a key role for pyridoxal and pyridoxal-5-phosphate biosynthesis in plant immunity. Our analysis indicates that P6C metabolism probably evolved through combining select lysine and proline metabolic enzymes horizontally acquired from diverse bacterial sources at different points during evolution. More generally, certain enzymes from the lysine and proline metabolic pathways were probably recruited in evolution as potential guardians of B6 vitamers and for semialdehyde detoxification.

Nature Plants. February 2025

International Consortium to Classify Ageing related Pathologies (ICCARP) senescence defnitions: achieving international consensus

Emma Short, Robert T.R. Huckstepp et al

It is paramount that the language used in the scienitifc and medical literature is clear and unambiguous to ensure shared understanding amongst researchers, clinicians, and policymakers. The aim of the ICCARP is to develop a systematic and comprehensive classifcation system for ageingrelated changes including pathologies, diseases, and syndromes. Currently, the ICCARP is in the process of identifying all phenomena that meet the criteria for ageing-related pathologies, to develop proposals for grouping and naming them within a comprehensive classification system. We expect that these defnitions, and subsequent classifcations, will contribute to improving discourse, research methodologies, clinical diagnostics, and public health planning.

Geroscience. February 2025

Quantifying infectious disease epidemic risks: A practical approach for seasonal pathogens

Alexander R Kaye, Giorgio Guzzetta, Michael J Tildesley

For many infectious diseases, the risk of outbreaks varies seasonally. If a pathogen is usually absent from a host population, a key public health policy question is whether the pathogen’s arrival will initiate local transmission, which depends on the season in which arrival occurs. This question can be addressed by estimating the “probability of a major outbreak” (the probability that introduced cases will initiate sustained local transmission). We have devised an approach for inferring outbreak risks for seasonal pathogens (involving calculating the Threshold Epidemic Risk; TER). Estimation of the TER involves calculating the probability that introduced cases will initiate a local outbreak in which a threshold number of cumulative infections is exceeded before outbreak extinction. For simple seasonal epidemic models, such as the stochastic Susceptible-Infectious-Removed model, the TER can be calculated numerically (without model simulations). For more complex models, such as stochastic host-vector models, the TER can be estimated using model simulations.

PLoS Computational Biology. February 2024

Phospho-tau serine-262 and serine-356 as biomarkers of pre-tangle soluble tau assemblies in Alzheimer’s disease

Tohidul Islam et al, including Emily Hill & Mark J Wall

Patients with Alzheimer’s disease (AD) with little or no quantifiable insoluble brain tau neurofibrillary tangle (NFT) pathology demonstrate stronger clinical benefits of therapies than those with advanced NFTs. The formation of NFTs can be prevented by targeting the intermediate soluble tau assemblies (STAs). However, biochemical understanding and biomarkers of STAs are lacking. Our findings inform about the status of early-stage tau aggregation, reveal aggregation-relevant phosphorylation epitopes in tau and offer a diagnostic biomarker and targeted therapeutic opportunities for AD.

Nature Medicine. February 2025 

Press Release

Multiple carbamylation events are required for differential modulation of Cx26 hemichannels and gap junctions by CO2

Sarbjit Nijjar, Deborah Brotherton, Jack Butler, Valentin-Mihai Dospinescu, Harry G Gannon, Victoria Linthwaite, Martin Cann, Alexander Cameron, Nicholas Dale 

CO2 directly modifies the gating of connexin26 (Cx26) gap junction channels and hemichannels. This gating depends upon Lys125, and the proposed mechanism involves carbamylation of Lys125 to allow formation of a salt bridge with Arg104 on the neighbouring subunit. We demonstrate via carbamate trapping and tandem mass spectrometry that five Lys residues within the cytoplasmic loop, including Lys125, are indeed carbamylated by CO2 . Our findings directly demonstrate carbamylation in connexins, provide further insight into the differential action of CO2 on Cx26 hemichannels and gap junction channels, and increase support for the role of the N-terminus in gating the Cx26 channel. KEY POINTS: Direct evidence of carbamylation of multiple lysine residues in the cytoplasmic loop of Cx26. Concentration-dependent carbamylation at lysines 108, 122 and 125. Only carbamylation of lysine 125 is essential for hemichannel opening to CO2. Carbamylation of lysine 108 along with lysine 125 is essential for CO2-dependent gap junction channel closure.

Journal of Physiology. February 2025

Antimicrobial triazinedione inhibitors of the translocase MraY–protein E interaction site: synergistic effects with bacitracin imply a new mechanism of action

Julia A. Fairbairn, Rachel V. Kerr, Nika-Kare A. Pierre-White, Anthony Jacovides, Becca W. A. Baileeves, Phillip J. Stansfeld, Gerhard Bringmann, Andrew T. Merritt and Timothy D. H. Bugg

Escherichia coli translocase MraY is the target for bacteriolytic protein E from bacteriophage fX174, interacting at a site close to Phe-288 on helix 9, on the extracellular face of the protein. A peptide motif Arg-Trp-x-x-Trp from protein E was used to design a set of triazinedione peptidomimetics, which inhibit particulate MraY (6d IC50 48 µM), and show antimicrobial activity against Gram-negative and Gram-positive antibiotic-resistant clinical strains (7j MIC Acinetobacter baumannii 16 µg/mL, Staphyloccoccus aureus MRSA 2-4 µg/mL). Docking against a predicted structure for E. coli MraY revealed two possible binding sites close to helix 9, the binding site for protein E. Antimicrobial activity of analogue 6j was found to be synergistic with bacitracin in Micrococcus flavus, consistent with a link between this inhibition site and undecaprenyl phosphate uptake. Alkaloid michellamine B, also predicted to bind in the cleft adjacent to helix 9, was also found to be synergistic with bacitracin. These data provide experimental evidence that the unusual hydrophobic cleft adjacent to helix 9 in MraY is involved in uptake of undecaprenyl phosphate, in addition to recently identified transporters UptA and PopT, and that this process can be targetted by small molecules as a novel antibacterial mechanism.

RSC Medicinal Chemistry. January 2025

A comparative study of ionic pesticide sorption and degradation in contrasting Brazilian soils and the development of a novel 3-Phase Assay to assess sorption reversibility

Baudin, Nastasia, Garrod, Mark, Bramke, Irene, Mckillican, Carol, Schafer, Hendrik, Hand, Laurence, Cione, Ana, Bending, Gary D, Marshall, Samantha

Brazilian soils have distinctive characteristics to European and North American soils which are typically used to investigate pesticide fate. This study aimed to compare soil–water partition coefficient (Kd), reversibility of adsorption and degradation half-life (DT50) of 5 pesticides covering a wide range of physico-chemical properties in contrasting Brazilian soils and a temperate (UK) alfisol soil, and to study their relationship with soil OM, clay and expandable clay content, CEC and pH. The results showed that pesticide behaviour in Brazilian soils was not systematically different from those in European and North American soils. The 3PA was shown to be a reliable and simple method for assessing pesticide desorption in soil and could be adapted to assess pesticide bioavailability. The use of the 3PA allowed a more thorough explanation of the observed differences in degradation behaviour between the compounds.

Environmental Monitoring and Assessment. January 2025

MCC950 Mitigates SIRT3-NLRP3-driven Inflammation and Rescues Post-Stroke Neurogenesis

Prakash R., Waseem A., Siddiqui A.J., Naim M., Khan M.A., Robertson A.A.B., Boltze J., Raza S.S.

after ischemic stroke. The objective of this study was to examine the potential mechanism by which the SIRT3-NLRP3 inflammasome affects neural stem and progenitor cells (NSPCs) after transient middle cerebral artery occlusion (tMCAO) in rats. Overall, our results suggest that protecting NSPCs and neurogenesis in the ischemically damaged brain by mitigating the impact of the SIRT3-NLRP3 inflammasome may be a feasible treatment strategy for ischemic stroke.

Biomedicine and Pharmacotherapy. January 2025

Inference of multiple mergers while dating a pathogen phylogeny

Helekal, David, Koskela, Jere and Didelot, Xavier

Here we consider the problem of detecting the presence of multiple mergers in the context of dating a phylogeny, that is determining the date of each of the nodes. We use the Lambda-coalescent theory as a modelling framework and show how Bayesian inference can be efficiently performed using a Billera-Holmes- Vogtmann space embedding and a customised Markov Chain Monte Carlo sampling scheme. We applied this new analysis methodology to a large number of simulated datasets to show that it is possible to infer if and when multiple merger events occurred, and that the phylogenetic dating is improved as a result of taking this information into account. We also analysed real datasets of Vibrio cholerae and Mycobacterium tuberculosis to demonstrate the relevance of our approach to real pathogen evolutionary epidemiology. We have implemented our new methodology in a R package which is freely available at https://github.com/dhelekal/MMCTime.

Systematic Biology. January 2025

MIBiG 4.0: advancing biosynthetic gene cluster curation through global collaboration

Zdouc, Mitja M. et al inc. Alberti, F

Specialized or secondary metabolites are small molecules of biological origin, often showing potent biological activities with applications in agriculture, engineering and medicine. Usually, the biosynthesis of these natural products is governed by sets of co-regulated and physically clustered genes known as biosynthetic gene clusters (BGCs). To share information about BGCs in a standardized and machine-readable way, the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard and repository was initiated in 2015. Here, we describe MIBiG version 4.0, an extensive update to the data repository and the underlying data standard.

Nucleic Acids Research. January 2025

Single-Cell Analysis with Spatiotemporal Control of Local pH

Kelsey Cremin, Gabriel N. Meloni, Orkun S. Soyer, Patrick R. Unwin

This work presents an experimental platform combining scanning ion conductance microscopy (SICM) with confocal laser scanning microscopy (CLSM), using intra- and extracellular pH indicator dyes to study the impact of acid delivery on individual HeLa cells within a population.. We find a strong dependency between the intracellular pH and the extracellular pH gradient imposed by local acid delivery. Postdelivery intracellular pH recovery depends on the extent of the acid challenge, with cells exposed to lower pH not returning to basal intracellular pH values after the extracellular pH recovers. This is a unique method for concentration-gradient challenge studies of cell populations that will have broad applications in cell biology. SICM can be used to deliver different chemicals and enables a wide range of local conditions to be applied across a cell population, for which the effects can be investigated at the single-cell level.

ACS Measurement Science. January 2025

Partitioning of fatty acids between membrane and storage lipids controls ER membrane expansion

Pawel K Lysyganicz, Antonio D Barbosa, Shoily Khondker, Nicolas A Stewart, George M Carman, Phillip J Stansfeld, Marcus K Dymond, Symeon Siniossoglou

Here we demonstrate that a lipid-degradation pathway inhibits expansion of the endoplasmic reticulum (ER) membrane. Phospholipid diacylglycerol acyltransferases (PDATs) use endogenous phospholipids as fatty-acyl donors to generate triglyceride stored in lipid droplets. The significance of this non-canonical triglyceride biosynthesis pathway has remained elusive. We show that active Lro1 mediates retraction of ER membrane expansion driven by phospholipid synthesis. Furthermore, subcellular distribution and membrane turnover activity of Lro1 are controlled by diacylglycerol produced by the activity of Pah1, a conserved member of the lipin family. Collectively, our findings reveal a lipid-metabolic network that regulates endoplasmic reticulum biogenesis by converting phospholipids into storage lipids.

EMBO Journal. January 2025

Modulation of stress-related behaviour by preproglucagon neurons and hypothalamic projections to the nucleus of the solitary tract

Marie K. Holt, Natalia Valderrama, Maria J. Polanco, Imogen Hayter, Ellena G. Badenoch, Stefan Trapp, Linda Rinaman

Stress-induced behaviours are driven by complex neural circuits and some neuronal populations concurrently modulate diverse behavioural and physiological responses to stress. Glucagon-like peptide-1 (GLP-1)-producing preproglucagon (PPG) neurons within the lower brainstem caudal nucleus of the solitary tract (cNTS) are particularly sensitive to stressful stimuli and are implicated in multiple physiological and behavioural responses to interoceptive and psychogenic threats. However, the afferent inputs driving stress-induced activation of PPG neurons are largely unknown, and the role of PPG neurons in anxiety-like behaviour is controversial. Through chemogenetic manipulations we reveal that cNTS PPG neurons have the ability to moderately increase anxiety-like behaviours in mice in a sex-dependent manner. Our findings reveal sex differences in behavioural responses to PPG neural activation and highlight a hypothalamic-brainstem pathway in stress-induced hypophagia.

Molecular Metabolism. January 2025

Jeremy Keown publications

Structure of the Nipah virus polymerase complex

Esra Balıkçı, Franziska Günl, Loïc Carrique, Jeremy R Keown, Ervin Fodor, Jonathan M Grimes

Nipah virus is a highly virulent zoonotic paramyxovirus causing severe respiratory and neurological disease. Despite its lethality, there is no approved treatment for Nipah virus infection. The viral polymerase complex, composed of the polymerase (L) and phos-phoprotein (P), replicates and transcribes the viral RNA genome. Here, we describe structures of the Nipah virus L-P polymerase complex and the L-protein’s Connecting Domain (CD). Our findings offer insights into the structural details of the L-P polymerase complex and the molecular interactions between L-proteinand P-protein, shedding light on the mechanisms of the replicationmachinery. This work will underpin efforts to develop antiviraldrugs that target the polymerase complex of Nipah virus.

EMBO Journal. December 2024.


Structural characterization of the full-length Hantaan virus polymerase

Jeremy R. Keown, Loïc Carrique, Benjamin E. Nilsson-Payant, Ervin Fodor, Jonnathan M. Grimes

Hantaviridae are a family of segmented negative-sense RNA viruses that contain important human and animal pathogens. Hantaviridae contain a viral RNA-dependent RNA polymerase that replicates and transcribes the viral genome. Here we establish the expression and purification of the polymerase from the Old World Hantaan virus and characterise the structure using Cryo-EM. The insights gained here guide future mechanistic studies of both the transcription and replication activities of the hantavirus polymerase and for the development of therapeutic targets.

PLoS Pathogens. December 2024

The influence of farm connectedness on foot-and-mouth disease outbreaks in livestock

Jean B. Contina, Rachel L. Seibel, Bhim Chaulagain, Karasi B. Mills, Michael J. Tildesley, Christopher C. Mundt

We applied a previously published livestock foot-and-mouth disease (FMD) model to estimate host connectivity using a transmission kernel based on contact tracing and measured subsequent to an animal movement ban in the 2001 United Kingdom epidemic. Connectivity within county-level farm landscapes were evaluated by considering the transmission kernel, host species composition, farm-level susceptibility, farm-level transmissibility, and distances between farms.  Connectivity of the initially infected farm and mean connectivity among all farms in a county were strongly associated with effects of cull size, with disease control more effective at lower levels of farm connectivity. Host connectivity provides early information on the host-pathogen landscape and could be used as an assessment tool for predicting epidemic risks, as well as enabling preemptive control strategies to limit the size of disease outbreaks.

Ecosphere. December 2024

Regional scale diversity and distribution of soil inhabiting Tetracladium

Anna Lazar, Robert I. Griffiths, Tim Goodall, Lisa R. Norton, Ryan M. Mushinski & Gary D. Bending

The genus Tetracladium has historically been regarded as an aquatic hyphomycete. However, sequencing of terrestrial ecosystems has shown that Tetracladium species might also be terrestrial soil and plant-inhabiting fungi. The diversity of Tetracladium species, their distribution across ecosystems, and the factors that shape community composition remain largely unknown. Using internal transcribed spacer (ITS) amplicon sequencing, we investigated the spatial distribution of Tetracladium in 970 soil samples representing the major ecosystems found across the British landscape. Overall, this study provides insights into the community composition patterns of Tetracladium in terrestrial ecosystems and highlights the importance of vegetation characteristics in shaping Tetracladium communities.

Environmental Microbiome. December 2024

Balancing selfing and outcrossing : the genetics and cell biology of nematodes with three sexual morphs

Adams, Sally, Tandonnet, Sophie and Pires-da Silva, André Francisco

Trioecy, a rare reproductive system where hermaphrodites, females, and males coexist, is found in certain algae, plants, and animals. Though it has evolved independently multiple times, its rarity suggests it may be an unstable or transitory evolutionary strategy. In the well-studied Caenorhabditis elegans, attempts to engineer a trioecious strain have reverted to the hermaphrodite/male system, reinforcing this view. However, these studies did not consider the sex-determination systems of naturally stable trioecious species. The discovery of free-living nematodes of the Auanema genus, which have naturally stable trioecy, provides an opportunity to study these systems. In Auanema, females produce only oocytes, while hermaphrodites produce both oocytes and sperm for self-fertilization. Crosses between males and females primarily produce daughters (XX hermaphrodites and females), while male-hermaphrodite crosses result in sons only. These skewed sex ratios are due to X-chromosome drive during spermatogenesis, where males produce only X-bearing sperm through asymmetric cell division. The stability of trioecy in Auanema is influenced by maternal control over sex determination and environmental cues. These factors offer insights into the genetic and environmental dynamics that maintain trioecy, potentially explaining its evolutionary stability in certain species.

Genetics 2024

Speeding up Inference of Homologous Recombination in Bacteria

Felipe J Medina-Aguayo, Xavier Didelot, Richard G Everitt

Bacteria reproduce clonally but most species recombine frequently, so that the ancestral process is best captured using an ancestral recombination graph. This graph model is often too complex to be used in an inferential setup, but it can be approximated for example by the ClonalOrigin model. Inference in the ClonalOrigin model is performed via a Reversible-Jump Markov Chain Monte Carlo algorithm, however this often performs poorly due to the complexity of the target distribution since it needs to explore spaces of different dimensions. Recent developments in Bayesian computation methodology have provided ways to improve existing methods and code, but are not well-known outside the statistics community. We show how exploiting one of these new computational methods can lead to faster inference under the ClonalOrigin model.

Bayesian Analysis. December 2024

Metabolic profiling and antibacterial activity of tree wood extracts obtained under variable extraction conditions

Diana Vinchira-Villarraga, Sabrine Dhaouadi, Vanja Milenkovic, Jiaqi Wei, Emily R. Grace, Katherine G. Hinton, Amy J. Webster, Andrea Vadillo-Dieguez, Sophie E. Powell, Naina Korotania, Leonardo Castellanos, Freddy A. Ramos, Richard J. Harrison, Mojgan Rabiey & Robert W. Jackson

This study aimed to develop a methodological approach to obtain extracts from different tree species with the highest reproducibility and chemical diversity possible, to ensure proper coverage of the trees’ metabolome. Each tree species has a unique metabolic profile, which means that no single protocol is universally effective. Extraction at 50 °C for three cycles using 80% methanol or chloroform/methanol/water showed the best results and is suggested for studying wood metabolome. These observations highlight the need to tailor extraction protocols to each tree species to ensure comprehensive metabolome coverage for metabolic profiling.

Metabolomics. December 2024

Delivery determinants of an Acinetobacter baumannii type VI secretion system bifunctional peptidoglycan hydrolase

Valeriya Bezkorovayna, Brooke K. Hayes, Francesca N. Gillett, Amy Wright, David I. Roper, Marina Harper, Sheena McGowan, John D. Boyce

Acinetobacter baumannii is a Gram-negative opportunistic pathogen and is a common cause of nosocomial infections.). Here we define the regions of interaction between Tae17 and its cognate delivery protein VgrG17 and identify that amino acids G1069 and W1075 in VgrG17 are essential for Tae17 delivery via the T6SS, the first time such specific delivery determinants of T6SS cargo effectors have been defined. Furthermore, we determine that the Tae17 effector is a multidomain, bifunctional, peptidoglycan-degrading enzyme that has both amidase activity, which targets the sugar-peptide bonds, and lytic transglycosylase activity, which targets the peptidoglycan sugar backbone. Moreover, we show that the Tae17 transglycosylase activity is more important than amidase activity for the killing of Escherichia coli. This study provides molecular insight into how the T6SS allows A. baumannii strains to gain dominance in polymicrobial communities and thus improve their chances of survival and transmission.

mBio. December 2024

Characterisation of Itersonilia spp. from Parsnip and Other Hosts

Lauren HK Chappell, Guy C Barker, John P Clarkson

Parsnips (Pastinaca sativa) are a speciality UK crop with an economic value of at least 31M GBP annually. Currently, the major constraints to production are losses associated with root canker disease due to a range of fungal pathogens, among which Itersonilia pastinacae is of most concern to growers. With limited research conducted on this species, this work aimed to provide a much-needed characterisation of isolates from across the UK, continental Europe, and New Zealand. Following whole genome sequencing, specific primers were designed for the molecular characterisation of the isolates using six housekeeping genes and three highly variable functional genes. Phylogenetic analysis separated isolates into two and six clades, respectively, but the grouping was not associated with hosts or locations. Based on the results of this research, there was no evidence to support more than a single species of Itersonilia among the isolates studied.

Journal of Fungi. December 2024

Mike Tildesley publications

The impact of natural climate variability on the global distribution of Aedes aegypti : a mathematical modelling study

Kaye, A. R., Obolski, U., Sun, L., Hart, W. S., Hurrell, J. W., Tildesley, M. J. and Thompson, R. N.

Aedes aegypti spread pathogens affecting humans, including dengue, Zika, and yellow fever viruses. Anthropogenic climate change is altering the spatial distribution of Ae aegypti and therefore the locations at risk of vector-borne disease. In addition to climate change, natural climate variability, resulting from internal atmospheric processes and interactions between climate system components (eg, atmosphere–land and atmosphere–ocean interactions), determines climate outcomes. However, the role of natural climate variability in modifying the effects of anthropogenic climate change on future environmental suitability for Ae aegypti has not been assessed fully. In this study, we aim to assess uncertainty arising from natural climate variability in projections of Ae aegypti suitability up to the year 2100. Lancet Planetary Health. December 2024

The time between symptom onset and various clinical outcomes : a statistical analysis of MERS-CoV patients in Saudi Arabia

Althobaity, Yehya, Alkhudaydi, Muhammad, Hill, Edward M., Thompson, Robin N. and Tildesley, Michael J

In this study, we investigate the impact of demographic characteristics on MERS-CoV cases in Saudi Arabia, specifically focusing on the time intervals between symptom onset and key events such as hospitalization, case confirmation, reporting and death. Importantly, we observe age-based differences in the risk of hospitalization and other measures of infection severity, including the probability of death conditional on hospitalization. Careful quantification of epidemiological characteristics, including inference of key epidemiological periods and assessments of differences between cases of different ages, plays a crucial role in understanding the progression of MERS-CoV outbreaks and formulating effective public health strategies to mitigate their impact.

Royal Society Open Society. November 2024

Identification of a terpene synthase arsenal using long-read sequencing and genome assembly of Aspergillus wentii

Richard Olumakaiye, Christophe Corre, Fabrizio Alberti

Fungi are talented producers of secondary metabolites with applications in the pharmaceutical and agrochemical sectors. Aspergillus wentii CBS 141173 has gathered research interest due to its ability to produce high-value norditerpenoid compounds, including anticancer molecules. In this study, we aimed to expand the genomic information available for A. wentii to facilitate the identification of terpenoid biosynthetic genes that may be involved in the production of bioactive molecules.

The results provide a scaffold for the future exploration of terpenoid biosynthetic pathways for bioactive molecules in A. wentii. The terpenoid clusters identified in this study are candidates for heterologous gene expression and/or gene disruption experiments. The description and availability of the long-read genome assembly of A. wentii CBS 141173 further provides the basis for downstream genome analysis and biotechnological exploitation of this species.

BMC Genomics. November 2024

Transcription factor deformed wings is an Atg8a-Interacting protein that regulates autophagy

Kołodziej, Marta, Tsapras, Panagiotis, Cameron, Alexander and Nezis, Ioannis P

LC3 (microtubule-associated protein 1 light chain 3, called Atg8 in yeast and Drosophila) is one of the most well-studied autophagy-related proteins. LC3 controls the selectivity of autophagic degradation by interacting with LIR (LC3-interacting region) motifs also known as AIM (Atg8-interacting motifs) on selective autophagy receptors that carry cargo for degradation. Although the function of Atg8 family proteins is primarily cytoplasmic, they are also enriched in the nucleus. Here, we used yeast two-hybrid screening, and we identified transcription factor Deformed wings (Dwg) as an Atg8a-interacting protein in Drosophila. Dwg-Atg8a interaction is LIR motif-dependent. We have created Dwg Y129A/I132A LIR mutant flies and shown that they exhibit elevated autophagy, improved resistance to oxidative stress, and starvation. Our results provide novel insights into the transcriptional regulation of autophagy in Drosophila.

Cells. November 2024

Understanding the ecological versatility of Tetracladium species in temperate forest soils

Anna Lazar, Richard P Phillips, Stephanie Kivlin, Gary D Bending, Ryan M Mushinski

Although Tetracladium species have traditionally been studied as aquatic saprotrophs, the growing number of metagenomic and metabarcoding reports detecting them in soil environments raises important questions about their ecological adaptability and versatility. We investigated the factors associated with the relative abundance, diversity and ecological dynamics of Tetracladium in temperate forest soils. Collectively, our findings highlight the ecological significance of Tetracladium in temperate forest soils and emphasize the importance of site-specific factors and microbial interactions in shaping their distribution patterns and ecological dynamics.

Environmental Microbiology. November 2024

Gladiolin produced by pathogenic Burkholderia synergizes with amphotericin B through membrane lipid rearrangements

Claudia Simm, Tzong-Hsien Lee, Harshini Weerasinghe, Dean Walsh, Ioanna T Nakou, Madhu Shankar, Wai Chung Tse, Rebecca Inman, Robert J Mulder, Freya Harrison, Marie-Isabel Aguilar, Gregory L Challis, Ana Traven

Amphotericin B (AmpB) is an effective but toxic antifungal drug.. AmpB disrupts fungal membranes by two proposed mechanisms: ergosterol sequestration from the membrane and pore formation. Whether these two mechanisms operate in conjunction and how they could be potentiated remains to be fully understood. Here, we report that gladiolin, a polyketide antibiotic produced by Burkholderia gladioli, is a strong potentiator of AmpB and acts synergistically against Cryptococcus and Candida species, including drug-resistant C. auris. Gladiolin also synergizes with AmpB against drug-resistant fungal biofilms, while exerting no mammalian cytotoxicity.. Collectively, our findings shed light on AmpB’s mechanism of action and characterize gladiolin as an AmpB potentiator, showing an antifungal mechanism distinct from its proposed antibiotic activity. We shed light on the synergistic mechanism at the membrane, and provide insights into potentiation strategies to improve AmpB’s activity/toxicity relationship.

mBio. November 2024

Membrane staining and phospholipid tracking in Pseudomonas aeruginosa PAO1 using the phosphatidylcholine mimic propargyl-choline

Chris L B Graham, Jack Bryant, David I Roper, Manuel Banzhaf 

Here we describe a method for in vivo phospholipid labelling by fluorescent imaging in Pseudomonas aeruginosa using a phosphatidylcholine (PC) mimic, “propargyl-choline”(PCho). This click-chemistry liable headgroup mimic is visible by microscopy and allows the covalent labelling of lipids. Fluorescence of the cell membranes, visible in heterogenous patches, is dependent on PCho concentration and is localised in the membrane fraction of cells, demonstrating that it is suitable for membrane labelling and cell imaging.

Access Microbiology. November 2024

Isolation and Characterisation of Novel Lytic Bacteriophages for Therapeutic Applications in Biofilm-Associated Prosthetic Joint Infections

Nathan J. Burton, Luís D R. Melo, Michaël F D. Tadesse, Bethany Pearce, Evangelos Vryonis, Antonia P. Sagona

In this study, we produced a cocktail of novel bacteriophages and assessed their viability to eradicate nosocomial staphylococcal biofilms. Here, we used clinical isolates from prosthetic joint infections to isolate and identify four new bacteriophages from sewage effluent. These novel phages were characterized through electron microscopy and full genome sequencing. Subsequently, we combined them into a phage cocktail, which effectively re-sensitized biofilms to vancomycin and flucloxacillin. Notably, this phage cocktail demonstrated low cytotoxicity in vitro to human epithelial cells, even when used alongside antibiotic treatments. These findings highlight the potential of the phage cocktail as a tool to increase antibiotic treatment success in prosthetic joint infections.

Sustainable Microbiology. November 2024

Cutaneous leishmaniasis in British troops following jungle training in Belize: Cumulative incidence and potential risk practices

Rawlings, Ngwa Niba, Bailey, Mark, Craig, Peter, Courtenay, Orin

British soldiers undergoing jungle training in Belize typically experience a relatively low risk of developing cutaneous leishmaniasis. However, an uncharacteristically large outbreak of cutaneous leishmaniasis occurred in 2022. This study aimed to determine the cumulative incidence of the disease and highlight potential shortcomings in personal protective measures to mitigate exposure to sand fly vector bites. A retrospective analysis was conducted on medical records of cutaneous leishmaniasis cases between 2005 and 2022, as well as on questionnaire responses regarding personal protective measures administered to cutaneous leishmaniasis cases in 2022. The reasons behind the unusually high numbers of cutaneous leishmaniasis cases and cumulative incidence in 2022 remain unclear, emphasising the need to improve personal protective measures provision and implement a comprehensive health education programme for troops undergoing jungle training in Belize.

Parasite Epidemiology and Control. November 2024

Emergence of synchronised growth oscillations in filamentous fungi

Praneet Prakash, Xue Jiang , Luke Richards, Zoe Schofield, Patrick Schafer Marco Polin, Orkun S. Soyer & Munehiro Asally

Many species of soil fungi grow in the form of branched networks that enable long-range communication and mass flow of nutrient. While there have been investigations on the branching of the fungal networks, their long-term growth dynamics in space and time is still not very well understood. In this study, we monitor the spatio-temporal growth dynamics of the plant-promoting filamentous fungus Serendipita indica for several days in a controlled environment within a microfluidic chamber. We find that S. indica cells display synchronised growth oscillations with the onset of sporulation and at a period of 3 hours. Quantifying this experimental synchronisation of oscillatory dynamics, we show that the synchronisation can be recapitulated by the nearest neighbour Kuramoto model with a millimetre-scale cell-cell coupling.

Royal Society Interface. October 2024

Complement-mediated killing of Escherichia coli by mechanical destabilization of the cell envelope

Georgina Benn, Christian Bortolini, David M Roberts, Alice L B Pyne, Seamus Holden, Bart W Hoogenboom

Complement proteins eliminate Gram-negative bacteria in the blood via the formation of membrane attack complex (MAC) pores in the outer membrane. However, it remains unclear how outer membrane poration leads to inner membrane permeation and cell lysis. Using atomic force microscopy (AFM) on living Escherichia coli (E. coli), we probed MAC-induced changes in the cell envelope and correlated these with subsequent cell death. We conclude that bacterial cell lysis is only an indirect effect of MAC formation; outer membrane poration leads to mechanical destabilization of the cell envelope, reducing its ability to contain the turgor pressure, leading to inner membrane permeation and cell death.

EMBO Journal. October 2024

Comparative genomics and transcriptomics reveal differences in effector complement and expression between races of Fusarium oxysporum f.sp. lactucae

Helen J. Bates, Jamie Pike, R. Jordan Price, Sascha Jenkins, John Connell, Andrew Legg, Andrew Armitage, Richard J. Harrison and John P. Clarkson

This study presents the first genome and transcriptome analyses for Fusarium oxysporum f. sp. lactucae (Fola) which causes Fusarium wilt disease of lettuce. Long-read genome sequencing of three race 1 (Fola1) and three race 4 (Fola4) isolates revealed key differences in putative effector complement between races and with other F. oxysporum ff. spp. following mimp-based bioinformatic analyses.

Frontiers in Plant Science. October 2024

Early Steps of the Biosynthesis of the Anticancer Antibiotic Pleurotin

Jack A. Weaver, Duha Alkhder, Panward Prasongpholchai, Michaël D. Tadesse, Emmanuel L. de los Santos, Lijiang Song, Christophe Corre, Fabrizio Alberti

Pleurotin is a meroterpenoid specialized metabolite made by the fungus Hohenbuehelia grisea, and it is a lead anticancer molecule due to its irreversible inhibition of the thioredoxin-thioredoxin reductase system. Total synthesis of pleurotin has been achieved, including through a stereoselective route; however, its biosynthesis has not been characterized. In this study, we used isotope-labeled precursor feeding to show that the nonterpenoid quinone ring of pleurotin and its congeners is derived from phenylalanine. This work sets the foundation to fully elucidate the biosynthesis of pleurotin and its congeners, with long-term potential to optimize their production for therapeutic use and engineer the pathway toward the biosynthesis of valuable analogues.

ACS Chemical Biology. October 2024

Imaging Glucose Metabolism and Dopaminergic Dysfunction in Sheep (Ovis aries) Brain using PET Imaging Reveals Abnormalities in OVT73 Huntington’s Disease Sheep

Williams G.K., Akkermans J., Lawson M., Syta P., Staelens S., Adhikari M.H., Morton A.J., Nitzsche B., Boltze J., Christou C., Bertoglio D., Ahamed M.

The major goal of our preliminary cross-sectional study is to demonstrate the feasibility and utility of the unique transgenic sheep model of HD (OVT73) in positron emission tomography (PET) imaging. In this first-of-its-kind study, we showed the usefulness and validity of HD sheep model in imaging cerebral glucose metabolism and dopamine uptake using PET imaging. The identification of discrete patterns of metabolic abnormality using [18F]FDG and decline of [18F]FDOPA uptake may provide a useful means of quantifying early HD-related changes in these models, particularly in the transition from presymptomatic to early symptomatic phases of HD.

ACS Chemical Neuroscience. October 2024

A regulatory module mediating temperature control of cell-cell communication facilitates tree bud dormancy release

Shashank K Pandey, Jay Prakash Maurya, Bibek Aryal, Kamil Drynda, Aswin Nair, Pal Miskolczi, Rajesh Kumar Singh, Xiaobin Wang, Yujiao Ma, Tatiana de Souza Moraes, Emmanuelle M Bayer, Etienne Farcot, George W Bassel, Leah R Band, Rishikesh P Bhalerao

The control of cell–cell communication via plasmodesmata (PD) plays a key role in plant development. In tree buds, low-temperature conditions (LT) induce a switch in plasmodesmata from a closed to an open state, which restores cell-to-cell communication in the shoot apex and releases dormancy. Using genetic and cell-biological approaches, we have identified a previously uncharacterized transcription factor, Low-temperature-Induced MADS-box 1 (LIM1), as an LT-induced, direct upstream activator of the gibberellic acid (GA) pathway. Mathematical modeling and experimental validation suggest that negative feedback regulation of LIM1 by gibberellin could play a crucial role in maintaining the robust temporal regulation of bud responses to low temperature. These results reveal genetic factors linking temperature control of cell–cell communication with regulation of seasonally-aligned growth crucial for adaptation of trees.

EMBO Journal. October 2024

Ammonia leakage can underpin nitrogen-sharing among soil microorganisms.

Luke Richards, Kelsey Cremin, Mary Coates, Finley Vigor, Patrick Schäfer, and Orkun S Soyer

Soil microbial communities host a large number of microbial species that support important ecological functions such as biogeochemical cycling and plant nutrition. The extent and stability of these functions are affected by inter-species interactions among soil microorganisms, yet the different mechanisms underpinning microbial interactions in the soil are not fully understood. Here, we study the extent of nutrient-based interactions among two model, plant-supporting soil microorganisms, the fungi Serendipita indica, and the bacteria Bacillus subtilis. Our findings highlight that ammonia based N-sharing can be a previously under-appreciated mechanism underpinning interaction among soil microorganisms and could be influenced by microbial or abiotic alteration of pH in microenvironments.

ISME Journal. September 2024

MSK1 is required for the experience- and ampakine-dependent enhancement of spatial reference memory and reversal learning and for the induction of Arc and BDNF

Lorenzo Morè, Lucia Privitera, Marcia Lopes, J. Simon C. Arthur, Julie C. Lauterborn, Sonia A.L. Corrêa, Bruno G. Frenguelli

One class of cognitive enhancers, the ampakines, has attracted particular attention by virtue of improving cognition associated with animal models of neurodevelopmental, neurodegenerative, and psychiatric conditions, as well as in age-related cognitive impairment. Ampakines elevate CNS levels of BDNF, and it is through this elevation that their beneficial actions are believed to occur. To establish whether MSK1 converts ampakine-induced elevations of BDNF into cognitive enhancement we tested an ampakine (CX929) in male WT mice and in male mice in which the kinase activity of MSK1 was inactivated. We found that MSK1 is required for the ampakine-dependent improvement in spatial reference memory and cognitive flexibility, and for the elevations of BDNF and the plasticity-related protein Arc associated with ampakines and experience. These observations implicate MSK1 as a key enabler of the beneficial effects of ampakines on cognitive function, and furthermore identify MSK1 as a hub for BDNF-elevating nootropic strategies.

Neuropharmacology. 2024

A retrospective assessment of forecasting the peak of the SARS-CoV-2 Omicron BA.1 wave in England

Keeling, Matthew James and Dyson, Louise

We discuss the invasion of the Omicron BA.1 variant into England as a paradigm for real-time model fitting and projection. Here we use a mixture of simple SIR-type models, analysis of the early data and a more complex age-structure model fit to the outbreak to understand the dynamics. In particular, we highlight that early data shows that the invading Omicron variant had a substantial growth advantage over the resident Delta variant. However, early data does not allow us to reliably infer other key epidemiological parameters - such as generation time and severity - which influence the expected peak hospital numbers. With more complete epidemic data from January 2022 are we able to capture the true scale of the epidemic in terms of both infections and hospital admissions, driven by different infection characteristics of Omicron compared to Delta and a substantial shift in estimated precautionary behaviour during December. This work highlights the challenges of real time forecasting, in a rapidly changing environment with limited information on the variant’s epidemiological characteristics.

PLoS Computational Biology. September 2024

Genetic-epigenetic interplay in the determination of plant 3D genome organization

Xiaoning He, Chloé Dias Lopes, Leonardo I Pereyra-Bistrain, Ying Huang, Jing An, Rim Brik Chaouche, Hugo Zalzalé, Qingyi Wang, Xing Ma, Javier Antunez-Sanchez, Catherine Bergounioux, Sophie Piquerez, Sotirios Fragkostefanakis, Yijing Zhang, Shaojian Zheng, Martin Cresp, Magdy M Mahfouz, Olivier Mathieu, Federico Ariel, Jose Gutierrez-Marcos, Xingwang Li, Nicolas Bouché, Cécile Raynaud, David Latrasse, Moussa Benhamed

The 3D chromatin organization plays a major role in the control of gene expression. In this study, employing a combination of genetics and advanced 3D genomics approaches, we demonstrated that a redistribution of facultative heterochromatin marks in regions usually occupied by constitutive heterochromatin marks disrupts the 3D genome compartmentalisation. This disturbance, in turn, triggers novel chromatin interactions between genic and transposable element (TE) regions. Interestingly, our results imply that epigenetic features, constrained by genetic factors, intricately mold the landscape of 3D genome organisation. This study sheds light on the profound genetic-epigenetic interplay that underlies the regulation of gene expression within the intricate framework of the 3D genome. Our findings highlight the complexity of the relationships between genetic determinants and epigenetic features in shaping the dynamic configuration of the 3D genome.

Nucleic Acids Research. September 2024